Delay Dependent H∞ Stochastic Stability Analysis for Stochastic Nonlinear Delay Hybrid Singular System

Article Preview

Abstract:

This paper deals with the problem of stochastic stability analysis for stochastic nonlinear delay hybrid singular system in this paper. Based on linear matrix inequality approach, a delay dependent condition is proposed, which ensures the stochastic nonlinear delay hybrid singular system is stochastically stable with H performance under zero initial conditions. Finally, an example is provided to demonstrate the effectiveness of the proposed approach.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

520-523

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Feng,X. Zhu,Q. Zhang. Delay-dependent Stability Criteria for Singular Time-delay Systems. Acta Automatica Sinica, 36(3): 433-437, (2010).

DOI: 10.3724/sp.j.1004.2010.00433

Google Scholar

[2] X. Sun,Q. Zhang,C. Yang, et al. Delay-dependent Stability Analysis and Stabilization of Discrete-time Singular Delay Systems. Acta Automatica Sinica, 36(10): 1477-1483, (2010).

DOI: 10.3724/sp.j.1004.2010.01477

Google Scholar

[3] S. Ma, C. Zhang, Z. Wu. Delay-dependent Stability and Control for Uncertain Discrete Switched Singular Systems with Time-delay. Applied Mathematics and Computation, 206(1): 413-424, (2008).

DOI: 10.1016/j.amc.2008.09.020

Google Scholar

[4] W. Mao. An Lmi Approach to -stability and -stabilization of Linear Discrete Singular Systems with State Delay. Applied Mathematics and Computation, 218(5): 1694-1704, (2011).

DOI: 10.1016/j.amc.2011.06.048

Google Scholar

[5] L. Li,Y. Jia,J. Du, et al. Robust Control for Uncertain Singular Systems with Time-varying Delay. Progress in Natural Science, 18(8): 1015-1021, (2008).

Google Scholar

[6] J. Lin,S. Fei,J. Shen. Delay-dependent H∞ Filtering for Discrete-time Singular Markovian Jump Systems with Time-varying Delay and Partially Unknown Transition Probabilities. Signal Processing, 91(2): 277-289, (2011).

DOI: 10.1016/j.sigpro.2010.07.005

Google Scholar

[7] S. Long, S. Zhong,Z. Liu. H∞ Filtering for a Class of Singular Markovian Jump Systems with Time-varying Delay. Signal Processing , 92(11): 2759-2768, (2012).

DOI: 10.1016/j.sigpro.2012.05.013

Google Scholar

[8] J. Lin, S. Fei. Robust Exponential Admissibility of Uncertain Switched Singular Time-delay Systems. Acta Automatica Sinica, 36(12): 1773-1779, (2010).

DOI: 10.3724/sp.j.1004.2010.01773

Google Scholar

[9] Y. Ding, H. Zhu, S. Zhong, et al. Exponential Mean-square Stability of Time-delay Singular Systems with Markovian Switching and Nonlinear Perturbations. Applied Mathematics and Computation, 219(4): 2350-2359, (2012).

DOI: 10.1016/j.amc.2012.08.067

Google Scholar

[10] E. Boukas. Stabilization of Stochastic Singular Nonlinear Hybrid Systems. Nonlinear Analysis: Theory, Methods & Applications, 64(2): 217-228, (2006).

DOI: 10.1016/j.na.2005.05.066

Google Scholar

[11] S. Long, S. Zhong,Z. Liu. Stochastic Admissibility for a Class of Singular Markovian Jump Systems with Mode-dependent Time Delays. Applied Mathematics and Computation, 219(8): 4106-4117, (2012).

DOI: 10.1016/j.amc.2012.10.058

Google Scholar

[12] J. Wang, H. Wang, A. Xue, et al. Delay-dependent Control for Singular Markovian Jump Systems with Time Delay. Nonlinear Analysis: Hybrid Systems, 8(0): 1-12, (2013).

DOI: 10.1016/j.nahs.2012.08.003

Google Scholar

[13] Y. Zhang,C. Liu,X. Mu. Robust Finite-time H∞ Control of Singular Stochastic Systems Via Static Output Feedback. Applied Mathematics and Computation, 218(9): 5629-5640, (2012).

DOI: 10.1016/j.amc.2011.11.057

Google Scholar