[1]
M.A. Leontovich, V.A. Fock, Solution of the problem of propagation of electromagnetic waves along the earth's surface by the method of parabolic equation, J. Phys., USSR, vol. 10, pp.13-23, (1946).
Google Scholar
[2]
Fock V A., Electromagnetic diffraction and propagation problems. New York: Pergamon Press, (1965).
Google Scholar
[3]
M.F. Levy, Borsboom P P. Radar cross-section computations using the parabolic equation method, Electronics Lett., vol. 32, no. 13, p.1234–1236, (1996).
DOI: 10.1049/el:19960757
Google Scholar
[4]
A.A. Zaporozhets M.F. Levy. Modelling of radiowave propagation in urban environment with parabolic equation method, Electronics Lett., vol. 32, no. 17, pp.1615-1616, (1996).
DOI: 10.1049/el:19961060
Google Scholar
[5]
A. Taflove and S.C. Hagness. Computational electrodynamics: the finite-difference time-domain method. Norwood MA: Artech House, (2000).
Google Scholar
[6]
A .A. Zaporozhets, M .F. Levy. Radar cross section calculation with marching methods, Electronics Letters., vol 34, pp.1971-1972, (1998).
DOI: 10.1049/el:19981342
Google Scholar
[7]
A .A. Zaporozhets, M .F. Levy. Bistatic RCS calculations with the vector parabolic equation method,. IEEE Trans. Antennas propag., vol. 47, no. 11, pp.1688-1696, (1999).
DOI: 10.1109/8.814948
Google Scholar
[8]
M. F. Levy. Parabolic equation methods for electromagnetic wave propagation. London: The Institution of Electrical Engineers, (2000).
Google Scholar
[9]
Z.X. Huang, Q. Wu, X.L. Wu. Solving multi-object radar cross section based on wide-angle parabolic equation method,. Journal of Systems Engineering and Electronics., vol. 17, no. 4, pp.722-724, (2006).
DOI: 10.1016/s1004-4132(07)60005-x
Google Scholar