Research of Adaptive Gradient Projection Algorithm on Remote Sensing Image Reconstruction

Article Preview

Abstract:

In order to improve the low efficient and the noise effect of remote sensing image reconstruction, an algorithm of adaptive dual gradient projection for sparse reconstruction of compressed sensing theory is proposed. Point to the high frequency noise of remote sensing image, the ADGPSR algorithm pursuits the projection direction in two conjudate directions, thus the high frequency noise effect is overcame. Experiment results show that, compared with the GPSR algorithm, the ADGPSR algorithm on remote sensing image improves the signals reconstruction accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

572-575

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Donoho, Compressed sensing[J]. IEEE Trans. Inform. Theory. 2006, 52 (4): 1289–1306.

DOI: 10.1109/tit.2006.871582

Google Scholar

[2] Candès E.J., Romberg,J., Tao,T., Signal recovery from incomplete and inaccurate measurements[J]. Comm. Pure. Appl. Math. 2005, 59(8): 1207-223.

DOI: 10.1002/cpa.20124

Google Scholar

[3] Donoho D, Huo X, Uncertainty Principles and Ideal Atomic Decompositions[J]. IEEE Trans Inform Theory, 2001, 47(7): 2845-2862.

DOI: 10.1109/18.959265

Google Scholar

[4] Lei, J. Generalized reconstruction algorithm for compressed sensing[J]. Computers and Electrical Engineering, v 37, n 4, pp.570-588, July (2011).

DOI: 10.1016/j.compeleceng.2011.04.007

Google Scholar

[5] M. Figueiredo,R. Nowak,S. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J], IEEE Journal of Slaected Topics in Signal Processing, 2007. 12, 1(4): 586-597.

DOI: 10.1109/jstsp.2007.910281

Google Scholar

[6] Satyanarayana, J.V. Ramakrishnan, A.G. An efficient document image reconstruction and binarization method using Compressed Sensing[J]. Proceedings of the IADIS International Conference Computer Graphics, Visualization, Computer Vision and Image Processing 2009, CGVCVIP 2009. Part of the IADIS MCCSIS 2009, pp.287-291, 2009, Proceedings of the IADIS International Conference Computer Graphics, Visualization, Computer Vision and Image Processing 2009, CGVCVIP 2009. Part of the IADIS MCCSIS (2009).

DOI: 10.1109/cgiv.2009.89

Google Scholar

[7] E. Candès,J. Romberg,T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J], IEEE Trans. Inform. Theory, 2006, 52(2): 489-509.

DOI: 10.1109/tit.2005.862083

Google Scholar

[8] Egiazarian, Karen. Compressed sensing image reconstruction via recursive spatially adaptive filtering[J]. Proceedings - International Conference on Image Processing, ICIP, v 1, p I549-I552, 2006, 2007 IEEE International Conference on Image Processing, ICIP 2007 Proceedings.

DOI: 10.1109/icip.2007.4379013

Google Scholar

[9] Ni Kangyu, Datta Somantika, Mahanti Prasun. etc. Using reed-muller sequences as deterministic compressed sensing matrices for image reconstruction[J]. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, pp.465-468.

DOI: 10.1109/icassp.2010.5495714

Google Scholar

[10] Le Montagner, Yoann, Marim Marcio. etc. Numerical evaluation of sampling bounds for near-optimal reconstruction in compressed sensing[J]. Proceedings - International Conference on Image Processing, ICIP, pp.3073-3076.

DOI: 10.1109/icip.2011.6116314

Google Scholar

[11] Mun, Sungkwang. Residual reconstruction for block-based compressed sensing of video[J]. Data Compression Conference Proceedings, pp.183-192, 2011, Proceedings - DCC 2011: 2011 Data Compression Conference.

DOI: 10.1109/dcc.2011.25

Google Scholar