[1]
Taflove, A. and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method. 2 ed. 2005, Norwood, MA: Artech House.
Google Scholar
[2]
Staker, S.W., et al., Alternating-Direction Implicit (ADI) Formulation of the Finite-Difference Time-Domain (FDTD) Method: Algorithm and Material Dispersion Implementation. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2003. 45(2): pp.156-166.
DOI: 10.1109/temc.2003.810815
Google Scholar
[3]
Zheng, F.H., Z.Z. Chen, and J.Z. Zhang, Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method. IEEE Trans. Microwave Theory Tech., 2000. 48: p.1550–1558.
DOI: 10.1109/22.869007
Google Scholar
[4]
Garcia, S.G., T. -W. Lee, and S.C. Hagness, On the accuracy of the ADI-FDTD method. IEEE Antenna Wireless Propagat. Lett., 2002. 1(1): p.31–34.
DOI: 10.1109/lawp.2002.802583
Google Scholar
[5]
Sun, G. and C.W. Trueman, Approximate Crank-Nicolson schemes for the 2-D finite difference time domain method for TEz waves. IEEE Transactions on Antennas and Propagation, 2004. 52(11): pp.2963-2972.
DOI: 10.1109/tap.2004.835142
Google Scholar
[6]
Wang, S., F.L. Teixeira, and J. Chen, An iterative ADI-FDTD with reduced splitting error. IEEE Microwave Component Letters, 2005. 15(2): pp.92-94.
DOI: 10.1109/lmwc.2004.842835
Google Scholar
[7]
Ahmed, I. and Z. Chen, Error Reduced ADI-FDTD Methods. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2005. 4: pp.323-325.
DOI: 10.1109/lawp.2005.855630
Google Scholar
[8]
Ahmed, I. and E. -P. Li, The Error Reduced ADI-CPML Method for EMC Simulation in Electromagnetic Compatibility, 2007. EMC 2007. IEEE International Symposium on 2007: Honolulu, HI pp.1-4.
DOI: 10.1109/isemc.2007.109
Google Scholar
[9]
García, S.G., et al., Extension of the ADI-FDTD Method to Debye Media. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003. 51(11): pp.3183-3186.
DOI: 10.1109/tap.2003.818770
Google Scholar