[1]
Daubechies I. Orthonormal basis of compactly supported wavelet [J]Comm Pure and Appl Math, 1988, 41: 909-996.
DOI: 10.1002/cpa.3160410705
Google Scholar
[2]
Yang Shou zhi,Li You fa. two direction refinable function and two direction wavelet with high approximation order and regularity[J].: China series A-math: Math, 2007, 37(7): 779-795.
DOI: 10.1007/s11425-007-0091-7
Google Scholar
[3]
Daubechies I, Lagarias J C. Two-scale difference equation I: existence and global regularity, of solutions[J]. SIAM Math Anal, 1991, 22: 138 8-1 410.
DOI: 10.1137/0522089
Google Scholar
[4]
Daubechies I , Lagarias J C. Two-scale difference equation II : Local regularity, infinite products of matrices and fractal[J]. SIAM Math Anal, 1992, 23: 1 031-1 079.
DOI: 10.1137/0523059
Google Scholar
[5]
Dahmen W , Micchelli C. Biorthogonal wavelet expansions[J]. Constr Approx , 1977, 13: 293-328.
DOI: 10.1007/s003659900045
Google Scholar
[6]
Song Li, Yang Jian bin. Vector refinement equationswith infinitely supportmasks[J]. Journal of Approximation theory, 2007 , 148 : 158-176.
Google Scholar
[7]
Lawton W , Lee S L. Shen Z. Characterization of compactly supported refinable splines[J]. Adv Comput Math, 1995, 3 : 137-145.
DOI: 10.1007/bf03028364
Google Scholar
[8]
Bakic D, Krishtal I, Wilson EN. Parseval frame wavelets with -dilations. Appl Comput. Harmon. Anal. 2005; 19(3): 386431.
Google Scholar