[1]
Dirk T.M. Slock, Constantinos. B. Papadias. Blind Fractionally-Spaced Equalization Based on Cyclostationarity[J], IEEE Transon IT, 1994. 3: 1286-1290.
DOI: 10.1109/vetec.1994.345301
Google Scholar
[2]
Sun Shouyu, Zheng Junli, Xu Zhongyong, Zhang Qi. Bind Fractionally Spaced Equalization via Modified Constant Modulus Algorithm[J]. ACTA ELECTRONICA SINICA, 2003, 31(11): 1732-1735.
Google Scholar
[3]
Li Song, Ge Lindong. Performance Analysis of Fractionally-Spaced Equalizer Adapted Via the Constant M odulus Algorithm[J]. Journal of Information Engineering University, 2004, 5(2): 79-82.
Google Scholar
[4]
A. Nasir, S. Durrani and R.A. Kennedy, Blind Fractionally Spaced Equalization and Timing Synchronization in wireless Fading Channels[J], in Proc. 2nd International Conference on Future Computer and Communication, vol3, Wuhan, China, pp.15-19, 21-24 May, (2010).
DOI: 10.1109/icfcc.2010.5497663
Google Scholar
[5]
Dirk T.M. Slock. Blind Fractionally-spaced Equalization, Perfect-reconstruction Filter Banks and Multichannel Linear Prediction[J], IEEE Transon IT, 1994. 4: 585-588.
DOI: 10.1109/icassp.1994.389749
Google Scholar
[6]
J. K Tugnait, A Parallel Multimodel CMA/Godard Adaptive Filter Bank Approach To Fractionally-Spaced Blind Adaptive Equalization[J], IEEE Conf on Communications, 1994. 4: 549-553.
DOI: 10.1109/icc.1994.368844
Google Scholar
[7]
J.K. Tugnait. On Fractionally-Spaced Blind Adaptive Equalization under Symbol Timing Offsets Using Godard And Related Equalizers[J]. IEEE Conf on Communications 1995. 5: 1976-(1979).
DOI: 10.1109/icassp.1995.480661
Google Scholar
[8]
J.R. Trichier, C.R. Johnson. Blind Fractionally-spaced equalization of digital cable TV[C]. In Proc. 8th IEEE Workshop Statistical Signal Proc. Corfu' Greece, 1996. 122 -130.
DOI: 10.1109/ssap.1996.534835
Google Scholar