A Review of Ferrates (VI) Oxidation of Organic Compounds

Article Preview

Abstract:

This review presents the oxidation of organic compounds, X (organosulfur compounds, amines, phenols, alcohols, hydrocarbons, ascorbate, and pharmaceuticals) by ferrate (VI). The rate of reactions of these compounds with ferrate (VI) usually decrease with increase in pH in alkaline media. The reactions of ferrate (VI) with compounds may be characterized most commonly by (i) a 1 e- transfer step from Fe (VI) to Fe (V), followed by a 2 e- transfer to Fe (III) as the reduced product (FeVI FeV FeIII), and (ii) 2 e- transfer steps (FeVI FeIV FeII). Oxygen-atom transfer to the compounds may occur through involvement of either ferrate (VI) in the oxidations carried out by ferrate (VI). Oxidation of biological species by ferrate (VI) is also briefly presented.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

556-559

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

Google Scholar

[1] V.K. Sharma, G.A.K. Anquandah, N. Nesnas, Environ. Chem. Lett. 7 (2009)115–119.

Google Scholar

[2] M. Sono, M.P. Roach, E.D. Coulter, J.H. Dawson, Chem. Rev. 96 (1996)2841–2887.

Google Scholar

[3] K.D. Karlin, Nat. Chem. 2 (2010) 711–712.

Google Scholar

[4] J.F. Berry, E. Bill, E. Bothe, S. George, F. Neese, K. Wieghardt, Science312 (2006) 1937–(1941).

Google Scholar

[5] J.J. Scepaniak, C.S. Vogel, M.M. Khusniyarov, Science 331 (2011) 1049–1052.

Google Scholar

[6] V.K. Sharma, Environ. Sci. Technol. 45 (2010) 5148–5152.

Google Scholar

[7] S. Licht, X. Yu, ACS Symp. Ser. 985(Ferrate) (2008) 2–51. Environ. Sci. Technol. 45 (2011) 10575–10581.

Google Scholar

[8] J. Hives, M. Benova, K. Bouzek, V.K. Sharma, in: Preprints of Extended Abstracts presented at the ACS National Meeting, ACS, Div. Environ. Chem. 46 (2006)553–557.

Google Scholar

[9] V.K. Sharma, E. Brillas, I. Sires, K. Bouzek, in: E. Brillas, C.A. Martinez-Huitle(Eds. ), Use of Boron-Doped Diamond Electrode in Electrochemical Generation.

DOI: 10.1002/9781118062364.ch9

Google Scholar

[10] A. Carrington, D.J.E. Ingram, D. Schonland, M.C.R. Symons, J. Chem. Soc. (1956)4701–4704.

Google Scholar

[11] N. Noorhasan, B. Patel, V.K. Sharma, Water Res. 44 (2010) 927–937.

Google Scholar

[12] R.L. Bartzatt, Trans. Met. Chem. 11 (1986) 116–117.

Google Scholar

[13] V.K. Sharma, C.R. Burnett, D.B. O'Connor, Environ. Sci. Technol. 36(2002) 4182–4186.

Google Scholar

[14] T. Kamachi, T. Nakayama, K. Yoshizawa, Bull. Chem. Soc. Jpn. 81 (2008)1212–1218.

Google Scholar

[15] V.K. Sharma, G.W. Luther III, F.J. Millero, Chemosphere (2011) 1083–1089.

Google Scholar

[16] V.K. Sharma, J. Environ. Sci. Health—Part A Toxic/Hazard. Subs. Environ. Eng. 45 (2010) 645–667.

Google Scholar

[17] G.A.K. Anquandah, V.K. Sharma, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 44 (2009) 62–66.

Google Scholar

[18] L. Delaude, P. Laszlo, J. Org. Chem. 61 (1996) 6360–6370.

Google Scholar

[19] K.S. Kim, Y.H. Chang, S.K. Bae, C.S. Hahn, Synthesis (1984) 866–868.

Google Scholar

[20] V.K. Sharma, M. Sohn, G. Anquandah, N. Nesnas, Chemosphere 87 (2012)644–648.

DOI: 10.1016/j.chemosphere.2012.01.019

Google Scholar

[21] J.N. BeMiller, V.G. Kumari, S.D. Darling, Tetrahedron Lett. 13 (1972)4143–4146.

Google Scholar

[22] M.H. Roepke, J.M. Ort, J. Phys. Chem. 35 (1931) 3596–3611.

Google Scholar

[23] R. Bartzatt, A. Tabatabai, J. Carr, Synth. React. Inorg. Met. Org. Chem. 15 (1985)1171–1187.

Google Scholar