Failure Mechanisms of Nanoparticle Reinforced Metal Matrix Composite

Article Preview

Abstract:

The quest for the advanced functional material of superior functionality for advanced structure is being driven in various fronts of engineering materials. One of such front is metal matrix composite (MMC) which has already been proven as one of the most productive field in that respect. With the advance of technology, now it is possible to reinforce the MMCs with nanosized particles compared to conventional micron-sized ones. However, the addition of nanoparticle in the MMC to improve its mechanical properties is not unconditional. To achieve positive gain by adding nanoparticles in the MMCs, all the influencing factors should be taken into consideration. The present paper reviews the failure mechanisms of nanoparticles reinforced MMCs in light of its strengthening mechanisms.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

548-551

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Paramsothy, J. Chan, R. Kwok, M. Gupta, Nanomater. 2 (2012) p.147.

Google Scholar

[2] L.C. Zhang, E.C.S. Kiat, A. Pramanik, Adv. Mater. Res, 76 (2009) p.212.

Google Scholar

[3] A. M. Dongare, B. LaMattina, Adv. Nanocompo. Technol. 2(2009) p.227.

Google Scholar

[4] B. S. kumar, L. Ramesh, Int. J. Eng. Res. Technol. 6 (2012) p.254.

Google Scholar

[5] Y. Tanaka, J. -M. Yang, Y.F. Liu, Y. Kagawaa, Scripta Mater. 56 (2007) p.209.

Google Scholar

[6] H.R. Hafizpour, M. Khoeini, J. American Sci. 7 (7) (2011) p.547.

Google Scholar

[7] A. Pramanik, A. Basak, Adv. Mater. Res. 651(2013) p.334.

Google Scholar

[8] A. Pramanik, L.C. Zhang, J.A. Arsecularatne, Key Eng. Mater. 340 (2007) p.563.

Google Scholar

[9] E. T. Thostenson, C. Li, T. -W. Chou, Comp. Sci. Technol. 65 (2005) p.491.

Google Scholar

[10] J. R. Greer, J. Th.M. De Hosson, Pro. Mat. Sci. 56(6) (2011) p.654.

Google Scholar

[11] G. Cao, X. Chen, J. W. Kysar, D. Lee, Y. X. Gan, Mech. Res. Comm. 34 (2007) p.275.

Google Scholar

[12] A. Pramanik, L.C. Zhang, J.A. Arsecularatne, Comp. Sci. and Tech. 68(6) (2008) p.1304.

Google Scholar

[13] A. Pramanik, A. Basak, Adv. Mater. Res. 651(2013) p.350.

Google Scholar

[14] C. -F. Chen, P. -W. Kao, L. Chang, N. -J. Ho, Mater. Trans. 51 (5) (2010) p.933.

Google Scholar

[15] A. Mortensen, J. Llorca, Annu. Rev. Mater. Res. 40 (2010) p.43.

Google Scholar

[16] G.E. Dieter, Mechanical Metallurgy (1961) McGraw-Hill, NewYork.

Google Scholar

[17] E. T. Thostenson, C. Li, T. -W. Chou, Compo. Sci. Technol. 65 (2005) p.491.

Google Scholar

[18] D. Bozic, J. Stasic, B. Dimcic, M. Vilotijevic, V. Rajkovic, Bull. Mater. Sci. 34 (2) (2011) p.217.

DOI: 10.1007/s12034-011-0102-8

Google Scholar

[19] J. Babu Rao, Dil Kush, NRMR Bhargava, J. Miner. Mater. Character. Eng. 11 (5) (2012) p.529.

Google Scholar

[20] J. Yang, Z. Zhang, K. Friedrich, A. K. Schlar, App. Phy. Lett. 91(2007) 011901.

Google Scholar

[21] C. Fan, L. Kecskes, T. Jiao, H. Choo, A. Inoue, P. Liaw, Mater. Trans. 47 (3) (2006) p.817.

Google Scholar

[22] A. Pramanik, M.N. Islam, A. Basak, G. Littlefair, Adv. Mater. Res. 651(2013) p.338.

Google Scholar

[23] S. W. Lee, H. J. Choi, Y. Kim, D.H. Bae, Mat. Sci. Eng. A 449–451 (2007) p.782.

Google Scholar

[24] J. -l. Tsai, H. Hsiao, Y. -l. Cheng, J. Comp. Mater. 44 (4) (2010) p.625.

Google Scholar