[1]
L. Pan, Q. He, J. Liu, Y. Chen, M. Ma, L. Zhang, J. Shi. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous Silica nanoparticles. J. Am. Chem. Soc., Vol. 134 (2012), p.5722.
DOI: 10.1021/ja211035w
Google Scholar
[2]
B. Julian-Lopez, C. Boissiere, C. Chaneac, D. Grosso, S. Vasseur, S. Miraux, E. Duguet, C. Sanchez. Mesoporous maghemite–organosilica microspheres: a promising route towards multifunctional platforms for smart diagnosis and therapy. J. Mater. Chem. Vol. 17 (2007).
DOI: 10.1039/b615951f
Google Scholar
[3]
Q. J. He, J. L. Shi, F. Chen, M. Zhu, L.X. Zhang. An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials, Vol. 31 (2010), p.3335.
DOI: 10.1016/j.biomaterials.2010.01.015
Google Scholar
[4]
I. I. Slowing, B. G. Trewyn, S. Giri, V. S. Y. Lin Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. Vol. 17 (2007), p.1225.
DOI: 10.1002/adfm.200601191
Google Scholar
[5]
Y. Zhu, T. Ikoma, N. Hanagata, S. Kaskel. Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as varriers for drug delivery. Small, Vol. 6 (2010), p.471.
DOI: 10.1002/smll.200901403
Google Scholar
[6]
Y. Z. You, K. K. Kalebaila, S. L. Brock, D. Oupickly Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. J. Chem Mater. Vol. 20 (2008), p.3354.
DOI: 10.1021/cm703363w
Google Scholar
[7]
H. Meng, M. Xue, T. Xia, Y.L. Zhao, F. Tamanoi, J. Fraser Stoddart, J.I. Zink, A. E. Nel Autonomous in vitro anticancer drug release from mesoporous Silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. Vol. 132 (2010), p.12690.
DOI: 10.1021/ja104501a
Google Scholar
[8]
J. Lu, E. Choi, F. Tamanoi, J. I. Zink. Light-activated nanoimpeller-controlled drug release in cancer cells. Small, Vol. 4 (2008), p.421.
DOI: 10.1002/smll.200700903
Google Scholar
[9]
F. Zhang, G. B. Braun, A. Pallaora, Y. Zhang, Y. Shi, D. Cui, M. Moskvts, D. Zhao, G. Stucky. Mesoporous multifunctional upconversion luminescent and magnetic nanorattle, materials for targeted chemotherapy. Nano Lett., Vol. 12 (2012), p.61.
DOI: 10.1021/nl202949y
Google Scholar
[10]
M. Widenmeyer, R. Anwander. Pore size control of highly ordered mesoporous silica MCM-48. Chem. Mater., Vol. 12 (2002), p.1827.
DOI: 10.1021/cm011273b
Google Scholar
[11]
F. Gao, P. Botella, A. Corma, J. Blesa, L. Dong. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. J. Phys. Chem. B, Vol. 113 (2009), p.1796.
DOI: 10.1021/jp807956r
Google Scholar
[12]
T. Kim, I. I. Slwing, P. W. Chung, Y. Lin. Ordered mesoporous polymer silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules. ACS nano, Vol. 5 (2011), p.360.
DOI: 10.1021/nn101740e
Google Scholar
[13]
J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and rluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. Vol. 47 (2008).
DOI: 10.1002/anie.200802469
Google Scholar
[14]
A. B. D. Nandiyanto, S. G. Kim, F. Iskandar, K. Okuyama. Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Micro. and Mesop. Mater., Vol. 120 (2009), p.447.
DOI: 10.1016/j.micromeso.2008.12.019
Google Scholar