[1]
W. Wei, G. H. Ma, G. Hu, et al., Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J. Am. Chem. Soc. Vol. 130 (2008), p.15808.
DOI: 10.1021/ja8039585
Google Scholar
[2]
L. Y. Tang, Y. C. Wang, Y. Li, et al., Shell-detachable micelles based on disulfide -linked block copolymer as potential carrier for intracellular drug delivery. Bioconjugate Chem. Vol. 20 (2009), p.1095.
DOI: 10.1021/bc900144m
Google Scholar
[3]
S. Santra, C. Kaittanis, J. Grimm, J.M. Perez. Drug/dye-loaded multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging . Small. Vol. 5 (2010), p.1862.
DOI: 10.1002/smll.200900389
Google Scholar
[4]
R. Guo, R. Li, X. L. Li et al., Dual-functional alginic acid hybrid nanospheres for cell imaging and drug delivery. Small. Vol. 5 (2009), p.709.
DOI: 10.1002/smll.200801375
Google Scholar
[5]
X. Y. Yang, X. Y. Zhang, Z. F. Liu et al., High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C. Vol. 112 (2008), p.17554.
DOI: 10.1021/jp806751k
Google Scholar
[6]
Y. J. Guo, S. J. Guo, J. T. Ren et al., Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano. Vol. 4 (2010), p.4001.
DOI: 10.1021/nn100939n
Google Scholar
[7]
L. M. Zhang, J. G. Xia, Q. H. Zhao et al., Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. Vol. 6 (2010), p.537.
DOI: 10.1002/smll.200901680
Google Scholar
[8]
X. Liu, L. Gao, W. Song, K. Ai, L. Lu. Functionalizing metal nanostructured film with grapheme oxide for ultrasensitive detection of aromatic molecules by surface-enhanced raman spectroscopy. ACS Appl. Mater. & Interfaces, Vol. 3 (2011), p.2944.
DOI: 10.1021/am200737b
Google Scholar
[9]
H. P. Cong, J. J. He, Y. Lu and S. H. Yu, Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small. Vol. 6 (2010), p.169.
DOI: 10.1002/smll.200901360
Google Scholar
[10]
J. Su, M. H. Cao, L. Ren and C. W. Hu, Fe3O4–graphene nanocomposites with improved lithium storage and magnetism properties. J. Phys. Chem. C. Vol. 115(2011), p.14469.
DOI: 10.1021/jp201666s
Google Scholar
[11]
X. Y. Yang, X. Y. Zhang, Y. F. Ma et al., Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Meter. Chem. Vol. 19 (2009), p.2710.
DOI: 10.1039/b821416f
Google Scholar
[12]
S. W. Jr. Hummers, R. E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. Vol. 80 (1958), p.1339.
DOI: 10.1021/ja01539a017
Google Scholar
[13]
N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. Vol. 11(1999), p.771.
DOI: 10.1021/cm981085u
Google Scholar
[14]
N. Kohler, C. Sun, J. Wang et al., Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir. Vol. 21(2005), p.8858.
DOI: 10.1021/la0503451
Google Scholar