Multiple Transfer Used on Repairing Transparent and Electric Film Based on CVD - Grown Graphene

Article Preview

Abstract:

We optimized the CH4 and H2 gas flow rate of chemical vapor deposition (CVD) graphene growth and obtained larger area, fewer-layered graphene grown on Cu foils. After transfering to SiO2 substrate by PMMA more than 3 times to repair the defect of monolayer graphene film, we synthesized large area, transparent and continuous graphene film. The morphology and structure were characterized by SEM and Raman spectroscopy. Analysis of electrical properties and optical properties show that we obtained low resistance and high transparency of ~90%, which could be used on photoelectric device as solar cell and acceptable for replacing commercial ITO electrodes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

634-639

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] XW Yang, HL Peng. Q Xie. Y Zhou, ZF Liu. Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. Journal of Electroanalytical Chemistry (2012).

DOI: 10.1016/j.jelechem.2012.09.025

Google Scholar

[2] Matthias Batzill, The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surface Science Reports 67 (2012) 83–115.

DOI: 10.1016/j.surfrep.2011.12.001

Google Scholar

[3] Z. G Wang, Y.F. Chen, P.J. Li, X. Hao, Y. Fu, K. Chen, L.X. Huang, D. Liu,Effects of methane flux on structural and transport properties of CVD-grown graphene films,Vacuum 86 (2012) 895-898.

DOI: 10.1016/j.vacuum.2011.05.011

Google Scholar

[4] Yoon-Young Choi, Seong Jun Kang, Han-KiKim, WonMookChoi, Seok-InNa. Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Solar Energy Materials & Solar Cells 96 (2012) 281–285.

DOI: 10.1016/j.solmat.2011.09.031

Google Scholar

[5] Y Yao. CP Wong. Monolayer graphene growth using additional etching process in atmospheric pressure chemical vapor deposition. CARBON 50 (2012), 5203-5209.

DOI: 10.1016/j.carbon.2012.07.003

Google Scholar

[6] G Nandamuri, S Roumimov and R Solanki, Chemical vapor deposition of graphene films, Nanotechnology 21 (2010) 145604 (4pp).

DOI: 10.1088/0957-4484/21/14/145604

Google Scholar

[7] Zheng Yan, Jian Lin, 3 Zhiwei Peng, Zhengzong Sun, Yu Zhu, Lei Li, Changsheng Xiang, E. Loïc Samuel, Carter Kittrell and James M. Tour. Towards the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils- Supporting Information.

DOI: 10.1021/nn303352k

Google Scholar

[8] ZW Peng ; Z Yan ; ZZ Sun, ; Tour, JM, Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel, ACS NANO(2011), 8241-8247.

DOI: 10.1021/nn202923y

Google Scholar

[9] S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. -J. Kim, K. S. Kim, B. Ozyilmaz, J. -H . Ahn, B.H. Hong, and S. Iijima, roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology(2010).

DOI: 10.1038/nnano.2010.132

Google Scholar

[10] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene. Reviews of Modern Physics, (2009), 81, 109-162.

DOI: 10.1103/revmodphys.81.109

Google Scholar

[11] Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc., E.; et al. Large-Area. Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science (2009), 324, 1312–1314.

DOI: 10.1126/science.1171245

Google Scholar

[12] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films. Science (2004), 306, 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[13] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene. Reviews of Modern Physics (2011), 83, 407-470.

DOI: 10.1103/revmodphys.83.407

Google Scholar

[14] Jiao L, Wang X, Dian G, Wang H, and Dai H, Facile synthesis of high-quality graphene nanoribbons. Nature Nanotechnology(2010), 5, 321-325.

DOI: 10.1038/nnano.2010.54

Google Scholar

[15] M. Kim, N. S. Safron, E. Han, M. S. Arnold, and P. Gopalan, Fabrication and Characterization of Large-Area, Semiconducting Nanoperforated Graphene Materials. Nano Letters (2010), 10, 1125-1131.

DOI: 10.1021/nl9032318

Google Scholar

[16] Albert Gutés, Carlo Carraro, Roya Maboudian, Single-layer CVD-grown graphene decorated with metal nanoparticles as a promising biosensing platform, Biosensors and Bioelectronics 33 (2012) 56-59.

DOI: 10.1016/j.bios.2011.12.018

Google Scholar

[17] Baoshan Hu, Hiroki Ago, Yoshito Ito, Kenji Kawahara, Masaharu Tsuji, Eisuke Magome, Kazushi Sumitani, Noriaki Mizuta, Ken-ichi Ikeda, Seigi Mizuno, Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD, CARBON 50 (2012).

DOI: 10.1016/j.carbon.2011.08.002

Google Scholar

[18] Chang Goo Kang, Sang Kyung Lee, Young Gon Lee, Hyeon Jun Hwang, Chunhum Cho, Sung Kwan Lim, Jinseong Heo, Hyun-Jong Chung, Heejun Yang, Sunae Seo, and Byoung Hun Lee, Enhanced Current Drivability of CVD Graphene Interconnect in Oxygen-Deficient Environment, IEEE ELECTRON DEVICE LETTERS, VOL. 32, NO. 11, NOVEMBER (2011).

DOI: 10.1109/led.2011.2166240

Google Scholar