[1]
D.W. Liu, G.Z. Cao, Energy Environ. Sci. 3 (2010) 1218-1237.
Google Scholar
[2]
M.H. Liang, L.J. Zhi, J. Mater. Chem. 19 (2009) 5871-5878.
Google Scholar
[3]
X.H. Huang, J.P. Tu, Z.Y. Zeng, J.Y. Xiang, X.B. Zhao, J. Electrochem. Soc. 155 (2008) A438-A441.
Google Scholar
[4]
S.R. Gowda, A.L.M. Reddy, M.M. Shaijumon, X. Zhan, L. Ci, P.M. Ajayan, Nano Lett. 11 (2010) 101-106.
Google Scholar
[5]
X.H. Huang, J.P. Tu, X.H. Xia, J.Y. Xiang, X.L. Wang, J. Power Sources 195 (2010) 1207-1210.
Google Scholar
[6]
X.H. Xia, J.P. Tu, J.Y. Xiang, X.H. Huang, J. Zhang, X.L. Wang, X.B. Zhao, J. Power Sources 195 (2010) 2014-(2022).
Google Scholar
[7]
Z.Y. Zhou, N. Tian, J.T. Li, I. Broadwell, S.G. Sun, Chem. Soc. Rev. 40 (2011) 4167-4185.
Google Scholar
[8]
C.M. Park, J.H. Kim, H. Kim, H.J. Sohn, Chem. Soc. Rev. 39 (2010) 3115-3141.
Google Scholar
[9]
P. Verma, P. Maire, P. Novak, Electrochim. Acta 55 (2010) 6332-6341.
Google Scholar
[10]
E. Yoo, J. Kim, E. Hosono, H. S. Zhou, T. Kudo, I. Honma, Nano Lett. 8 (2008) 2277-2282.
Google Scholar
[11]
D.Y. Pan, S. Wang, B. Zhao, M.H. Wu, H.J. Zhang, Y. Wang, Z. Jiao, Chem. Mater. 21 (2009) 3136-3142.
Google Scholar
[12]
Y.J. Mai, X.L. Wang, J.Y. Xiang, Y.Q. Qiao, D. Zhang, C.D. Gu, J.P. Tu, Electrochim. Acta 56 (2011) 2306-2311.
Google Scholar
[13]
G.X. Wang, B. Wang, X.L. Wang, J. Park, S.X. Dou, H. Ahn, K. Kim, J. Mater. Chem. 19 (2009) 8378-8384.
Google Scholar
[14]
X.Y. Wang, X.F. Zhou, K. Yao, J.G. Zhang, Z.P. Liu, Carbon 49 (2011) 133-139.
Google Scholar
[15]
D.A.C. Brownson, D.K. Kampouris, C.E. Banks, J. Power Sources 196 (2011) 4873-4885.
Google Scholar
[16]
X.J. Zhu, Y.W. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, J. Power Sources 196 (2011) 6473-6477.
Google Scholar
[17]
Z. -S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H. -M. Cheng, ACS Nano 4 (2010) 3187-3194.
Google Scholar
[18]
H.F. Xiang, K. Zhang, G. Ji, J.Y. Lee, C.J. Zou, X.D. Chen, J.S. Wu, Carbon 49 (2011) 1787-1796.
Google Scholar
[19]
P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, H. Wang, Electrochim. Acta 55 (2010) 3909.
Google Scholar
[20]
Hummers, W. S., Offeman, R. J., J. Am Chem. Soc. 80, 1339(1958).
Google Scholar
[21]
Z.G. Cheng, Q.Y. Zhou, C.X. Wang, Q.A. Li, C. Wang, Y. Fang, Nano Lett. (2011) 11, 767-771.
Google Scholar
[22]
N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, Adv. Funct. Mater. (2008)18, 1518-1525.
Google Scholar
[23]
J. Wang, K.K. Manga, Q. Bao, K.P. Loh, J. Am. Chem. Soc. (2011) 133, 8888-8891.
Google Scholar
[24]
Y. Hernandez, V. Nicolosi, M. Loyta, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun'ko, et al. Nat. Nanotechnol. (2008) 3, 563-568.
Google Scholar
[25]
K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, ACS Nano (2013), 7 (4), 3598-3606.
Google Scholar
[26]
A. Fasolino, J.H. Los, M.I. Katsnelson, Nat. Mater. (2007), 6, 858-861.
Google Scholar
[27]
J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature (2007), 446, 60-63.
DOI: 10.1038/nature05545
Google Scholar
[28]
A.C. Ferrari, Robertson. J Phys Rev B. (2000) 61: 14095-107.
Google Scholar
[29]
S. Stankovich, D.A. Dikin, R.D. Piner, K.M. Kohlhass, A. Kleinhammes, Y.Y. Jia, et al. Carbon (2007) 45: 1558-65.
Google Scholar
[30]
G.X. Wang, J. Yang, J.S. Park, X.L. Gou, et al. J. Phys Chem. C (2008) 112: 8192-5.
Google Scholar