Graphene Based Electrode Using in Rechargeable Lithium Ion Batteries

Article Preview

Abstract:

Graphene as high capacity anode materials for rechargeable lithium ion batteries (LIBs) have been studied extensively with the aim of enhancing lithium ion and electron transport, lowering the stress caused by their volume changes during the charge/discharge processes of electrodes in LIBs. As we know, graphite is a practical anode material used for LIBs, because of its capability for reversible lithium ion intercalation in the layered crystals, and the structural similarities of graphene to graphite may provide another type of intercalation anode compound. In this work, the anode electrodes of LIBs include graphene nanosheet (GNS) and graphene nanosheet + carbon nanotubes (GNS+CNT). GNS was prepared through the thermal exfoliation of oxided graphite (OGS), which was synthesized by a modified Hummers method. The specific capacity of GNS was found to be 280 mAh/g after 200 cycles at 1C, and this was increased up to 320 mAh/g by the incorporation of macromolecules of CNT to the GNS.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

640-645

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.W. Liu, G.Z. Cao, Energy Environ. Sci. 3 (2010) 1218-1237.

Google Scholar

[2] M.H. Liang, L.J. Zhi, J. Mater. Chem. 19 (2009) 5871-5878.

Google Scholar

[3] X.H. Huang, J.P. Tu, Z.Y. Zeng, J.Y. Xiang, X.B. Zhao, J. Electrochem. Soc. 155 (2008) A438-A441.

Google Scholar

[4] S.R. Gowda, A.L.M. Reddy, M.M. Shaijumon, X. Zhan, L. Ci, P.M. Ajayan, Nano Lett. 11 (2010) 101-106.

Google Scholar

[5] X.H. Huang, J.P. Tu, X.H. Xia, J.Y. Xiang, X.L. Wang, J. Power Sources 195 (2010) 1207-1210.

Google Scholar

[6] X.H. Xia, J.P. Tu, J.Y. Xiang, X.H. Huang, J. Zhang, X.L. Wang, X.B. Zhao, J. Power Sources 195 (2010) 2014-(2022).

Google Scholar

[7] Z.Y. Zhou, N. Tian, J.T. Li, I. Broadwell, S.G. Sun, Chem. Soc. Rev. 40 (2011) 4167-4185.

Google Scholar

[8] C.M. Park, J.H. Kim, H. Kim, H.J. Sohn, Chem. Soc. Rev. 39 (2010) 3115-3141.

Google Scholar

[9] P. Verma, P. Maire, P. Novak, Electrochim. Acta 55 (2010) 6332-6341.

Google Scholar

[10] E. Yoo, J. Kim, E. Hosono, H. S. Zhou, T. Kudo, I. Honma, Nano Lett. 8 (2008) 2277-2282.

Google Scholar

[11] D.Y. Pan, S. Wang, B. Zhao, M.H. Wu, H.J. Zhang, Y. Wang, Z. Jiao, Chem. Mater. 21 (2009) 3136-3142.

Google Scholar

[12] Y.J. Mai, X.L. Wang, J.Y. Xiang, Y.Q. Qiao, D. Zhang, C.D. Gu, J.P. Tu, Electrochim. Acta 56 (2011) 2306-2311.

Google Scholar

[13] G.X. Wang, B. Wang, X.L. Wang, J. Park, S.X. Dou, H. Ahn, K. Kim, J. Mater. Chem. 19 (2009) 8378-8384.

Google Scholar

[14] X.Y. Wang, X.F. Zhou, K. Yao, J.G. Zhang, Z.P. Liu, Carbon 49 (2011) 133-139.

Google Scholar

[15] D.A.C. Brownson, D.K. Kampouris, C.E. Banks, J. Power Sources 196 (2011) 4873-4885.

Google Scholar

[16] X.J. Zhu, Y.W. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, J. Power Sources 196 (2011) 6473-6477.

Google Scholar

[17] Z. -S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H. -M. Cheng, ACS Nano 4 (2010) 3187-3194.

Google Scholar

[18] H.F. Xiang, K. Zhang, G. Ji, J.Y. Lee, C.J. Zou, X.D. Chen, J.S. Wu, Carbon 49 (2011) 1787-1796.

Google Scholar

[19] P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, H. Wang, Electrochim. Acta 55 (2010) 3909.

Google Scholar

[20] Hummers, W. S., Offeman, R. J., J. Am Chem. Soc. 80, 1339(1958).

Google Scholar

[21] Z.G. Cheng, Q.Y. Zhou, C.X. Wang, Q.A. Li, C. Wang, Y. Fang, Nano Lett. (2011) 11, 767-771.

Google Scholar

[22] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, Adv. Funct. Mater. (2008)18, 1518-1525.

Google Scholar

[23] J. Wang, K.K. Manga, Q. Bao, K.P. Loh, J. Am. Chem. Soc. (2011) 133, 8888-8891.

Google Scholar

[24] Y. Hernandez, V. Nicolosi, M. Loyta, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun'ko, et al. Nat. Nanotechnol. (2008) 3, 563-568.

Google Scholar

[25] K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, ACS Nano (2013), 7 (4), 3598-3606.

Google Scholar

[26] A. Fasolino, J.H. Los, M.I. Katsnelson, Nat. Mater. (2007), 6, 858-861.

Google Scholar

[27] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature (2007), 446, 60-63.

DOI: 10.1038/nature05545

Google Scholar

[28] A.C. Ferrari, Robertson. J Phys Rev B. (2000) 61: 14095-107.

Google Scholar

[29] S. Stankovich, D.A. Dikin, R.D. Piner, K.M. Kohlhass, A. Kleinhammes, Y.Y. Jia, et al. Carbon (2007) 45: 1558-65.

Google Scholar

[30] G.X. Wang, J. Yang, J.S. Park, X.L. Gou, et al. J. Phys Chem. C (2008) 112: 8192-5.

Google Scholar