Vertical Floating Zone Crystal Growth of R2PdSi3 Intermetallic Compounds (R=Pr and Nd)

Article Preview

Abstract:

The class of R2PdSi3 single crystals (R= rare earth element) with hexagonal AlB2-type crystallographic structure reveals the systematic dependence of anisotropic magnetic properties governed by the interplay of crystal-electric field effects and magnetic two-ion interactions. Here we compare the floating zone (FZ) crystal growth with radiation heating of compounds Pr2PdSi3 and Nd2PdSi3. The congruent melting behavior enabled moderate growth velocities of 3 to 5 mmh-1. The preferred growth directions are close to the basal plane of the hexagonal unit cell. The composition of the crystals, is slightly Pd-depleted with respect to the nominal composition 16.7 at.% Pd. The Pr2PdSi3 compound exhibit antiferromagnetic order below the Néel temperatures TN: 2.17 K and Nd2PdSi3 compound order ferromagnetically below the Curie temperature TC = 15.1 K.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

720-724

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.A. Kotsandis, J.K. Yakinthos, E. Gamari-Seale, J. Magn. Magn. Mater. Vol. 87 (1990), p.199.

Google Scholar

[2] R. Mallik, E.V. Sampathkumaran, P.L. Paulose, Solid State Commun. Vol. 106 (1998), p.169.

Google Scholar

[3] S.R. Saha, H. Sugawara, T.D. Matsuda, H. Sato, R. Mallik, E.V. Sampathkumaran, Phys. Rev. B Vol. 60 (1999), p.12162.

Google Scholar

[4] S.R. Saha, H. Sugawara, T.D. Matsuda, Y. Aoka, H. Sato, E.V. Sampathkumaran, Phys. Rev. B Vol. 62 (2000), p.425.

Google Scholar

[5] G. Behr, W. Löser, H. Bitterlich, G. Graw, D. Souptel, E.V. Sampathkumaran, J. Cryst. Growth Vol. 237-239 (2002), p. (1976).

DOI: 10.1016/s0022-0248(01)02294-1

Google Scholar

[6] G. Graw, H. Bitterlich, W. Löser, G. Behr, J. Fink, L. Schultz, J. Alloys and Compounds Vol. 308 (2000), p.193.

DOI: 10.1016/s0925-8388(00)00894-x

Google Scholar

[7] G. Behr, W. Löser, G. Graw, H. Bitterlich, J. Fink, L. Schultz, Cryst. Res. & Technol Vol. 35 (2000), p.461.

DOI: 10.1002/1521-4079(200004)35:4<461::aid-crat461>3.0.co;2-d

Google Scholar

[8] E.V. Sampathkumaran, H. Bitterlich, K.K. Iyer, W. Löser, G. Behr, Phys. Rev. B Vol. 66 (2002), p.52409.

Google Scholar

[9] I. Mazilu, M. Frontzek, W. Löser, G. Behr, A. Teresiak, L. Schultz, J. Crystal Growth Vol. 275 (2005), p. e103.

DOI: 10.1016/j.jcrysgro.2004.10.134

Google Scholar

[10] D. Souptel, W. Löser, G. Behr, J. Cryst. Growth Vol. 300 (2007), p.538.

Google Scholar

[11] G. Behr, W. Löser, D. Souptel, G. Fuchs, I. Mazilu, C. Cao, A. Köhler, L. Schultz, B. Büchner, J. Cryst. Growth Vol. 310 (2008), p.2268.

DOI: 10.1016/j.jcrysgro.2007.11.227

Google Scholar

[12] Y. Xu, W. Löser, F. Tang,C. Blum, M. Frontzek, L. Liu, B. Büchner. Crystal Research and Technology Vol. 2 (2011), p.135.

Google Scholar

[13] Y. Xu, W. Löser, G. Behr, M. Frontzek, F. Tang, B. Büchner, L. Liu, J. Cryst. Growth Vol. 312 (2010), p. (1992).

Google Scholar

[14] I. Mazilu, A. Teresiak, J. Werner, G. Behr, C.D. Cao, W. Löser, J. Eckert, L. Schultz, J. Alloys Comp Vol. 454 (2008), p.221.

DOI: 10.1016/j.jallcom.2007.01.044

Google Scholar