[1]
D. Xiang, L. Xu, L. Jia. The design of basement rebuilding into radial shielded room. J. Shandong Institute of Arch & Eng. 2001; 16 (3): 64-68. (in Chinese).
Google Scholar
[2]
J. Cao, D.D.L. Chung. Coke powder as an admixture in cement for electromagnetic interference shielding. Carbon. 2003; 41 (12): 2433-36.
DOI: 10.1016/s0008-6223(03)00289-6
Google Scholar
[3]
H. Guan, S. Liu, Y. Duan. Cement based electromagnetic shielding and absorbing building materials. Cement & Concrete Composites. 2006 (in press).
DOI: 10.1016/j.cemconcomp.2005.12.004
Google Scholar
[4]
Pourjavadi. A, Fakoorpoor. SM, Khaloo. A, Hosseini.P. Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles. Journal of Materials Science. J. 2012; 42 (5): 94-101.
DOI: 10.1016/j.matdes.2012.05.030
Google Scholar
[5]
G. Xiong, M. Deng, L. Xu. Absorbing electromagnetic wave properties of cement-based composites. J. Chinese Ceramic Society. 2004; 32 (10): 1281-84. (in Chinese).
Google Scholar
[6]
G. Xiong, L. Xu, M. Deng. Research on absorbing EMW properties and mechanical properties of nanometric TiO2 and cement composites. J. Functional Mater. & Devices. 2005; 11(1): 87-91. (in Chinese).
Google Scholar
[7]
H. Yang, J. Li, Q. Ye. Research on absorbing EMW properties of steel–fiber concrete. J. Functional Mater. 2002; 33 (3): 341-43. (in Chinese).
Google Scholar
[8]
N. Ohmi, Y. Murakmi, M. Sbibayama, et al. Measurements of reflection and transmission characteristics of interior structures of office buildings in the 60 GHz band. PIMRC'96, 7th International Symposium on. 1996. pp.14-18.
DOI: 10.1109/pimrc.1996.567504
Google Scholar
[9]
K. Kimura, O. Hashimoto. Three-layer wave absorber using common building material for wireless LAN. Electronics Letters. 2004; 40 (21): 1323-24.
DOI: 10.1049/el:20046426
Google Scholar
[10]
J. Xu, WH. Zhong, W. Yao. Modeling of conductivity in carbon fiber-reinforced cement-based composite. Journal of Materials Science. J. 2010; 45(13): 3538-3546.
DOI: 10.1007/s10853-010-4396-5
Google Scholar
[11]
S. R, Zhu, D.D.L. Chung. Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure. Journal of Materials Science. J. 2007; 42(15): 6222-6233.
DOI: 10.1007/s10853-006-1131-3
Google Scholar
[12]
X. Li, Q. Kang, C. Zhou. Research on absorbing properties of the concrete shielding material at 3mm wave bands. Asia-Pacific Conference on Environmental Electromagnetics. Hangzhou, China. 2003. pp.536-40.
DOI: 10.1109/ceem.2003.238407
Google Scholar
[13]
M. Morimoto, K. Kanda, H. Hada, et al. Development of electromagnetic absorbing board for wireless communication environment. In Proceedings of the Conference of Architectural Institute of Japan. 1998, D-1. pp.1069-70.
Google Scholar
[14]
M. Oda. Radio wave absorptive building materials for depressing multipath indoors. Electromagnetic Compatibility, 1999 International Symposium on. 1999. pp.492-95.
DOI: 10.1109/elmagc.1999.801372
Google Scholar
[15]
T. Yamane, S. Numata, T. Mizumoto, et al. Development of wide-band ferrite fin electromagnetic wave absorber panel for building wall. Electromagnetic Compatibility, 2002 International Symposium on. 2002, vol. 2. pp.799-804.
DOI: 10.1109/isemc.2002.1032697
Google Scholar
[16]
M. Kobayashi, Y. Kasashima, H. Nakagawa. Anti-radio wave transmission curtain wall used in buildings. J. Japan Soc. Composite Mater. 1998; 24 (1): 32-34. (in Japanese).
Google Scholar
[17]
M. Kobayashi, Y. Kasashima. Anti-radio wave reflection curtain wall used in tall buildings. J. Japan Soc. Composite Mater. 1998; 24 (3): 110-13. (in Japanese).
Google Scholar
[18]
B. Li, S. Liu. Research on the absorbing property of cement matrix composite materials. International Conference on Concrete Construction, Kingston Univ London, London. Excellence in Concrete Construction Through Innovation, 2009: 215-219.
DOI: 10.1201/9780203883440.ch31
Google Scholar
[19]
D. J. Cook. Expanded polystyrene beads as lightweight aggregate for concrete. Precast Concrete. 1983; 45 (12): 691-93.
Google Scholar
[20]
B. Chen, J. Y. Liu. Properties of lightweight expanded polystyrene concrete reinforced with steel fiber. Cement & Concrete Research. 2004; 34 (7): 1259-63.
DOI: 10.1016/j.cemconres.2003.12.014
Google Scholar
[21]
P. B. Bandyopadhyay. Dielectric behavior of polystyrene foam at microwave frequency. Polymer Eng. & Sci. 1980; 20 (6): 441-46.
Google Scholar
[22]
Akif Kaynak. Electromagnetic shielding effectiveness of galvanostatically synthesized conduvting polypyrrole films in the 300-2000 MHz frequency range. Mater. Res. Bull. Vol. 31(7), 1996, pp.845-60.
DOI: 10.1016/0025-5408(96)00038-4
Google Scholar
[23]
A. J. Simmons, W. H. Emerson. An anechoic chamber making use of a new broadband absorbing material. IRE International Convention Record. 1953; 1 (2): 34-41.
DOI: 10.1109/irecon.1953.1148695
Google Scholar
[24]
Jingyao Cao, D.D.L. Chung. Use of fly ash as an admixture for electromagnetic interference shielding [J]. Cement & Concrete Research. 2004,34(10):1889~92.
DOI: 10.1016/j.cemconres.2004.02.003
Google Scholar
[25]
B. Li, Y. Duan, Y. Zhang, S. Liu. Electromagnetic wave absorption properties of cement-based composites filled with porous materials. Materials and Design, 2011, 32(5): 3017-3020.
DOI: 10.1016/j.matdes.2010.12.017
Google Scholar