Effects of Low-Energy Electron Irradiation on Enhancement-Mode AlGaN/GaN High-Electron-Mobility Transistors

Article Preview

Abstract:

The effects of low energy (1.8 MeV) electron irradiation on enhancement-mode (E-mode) AlGaN/GaN high electron mobility transistors (HEMTs) have been reported. When the dose up to 1.1×1016 cm-2, the saturation drain current and maximal transconductance of E-mode AlGaN/GaN HEMTs increase after irradiation. However, almost no change of threshold voltage and gate leakage current is observed. The results are explained by the creation of positive charges in the AlGaN layer by ionizing energy loss, especially the creation of N vacancies and Ga vacancies by non-ionizing energy loss. Moreover, low-energy electron irradiation could recover the electron mobility.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

876-880

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. Khan, Q. Chen, C. J. Sun, J. W. Yang, M. Blasingame, M. Shur and H. SandPark, Appl. Phys. Lett. Vol. 68, (1995), p.514.

Google Scholar

[2] V. Kumar, A. Kuliev, T. Tanaka, Y. Otoki and I. Adesada, IEEE Electron Lett. Vol. 39, (2003), p.1758.

Google Scholar

[3] Y. Cai, Y. G. Zhou, K. J. Chen and K. M. Lau, IEEE Electron Device Lett. Vol. 26, (2005), p.7.

Google Scholar

[4] Y. Cai, Y. Zhou, K. M. Lau and K. J. Chen, IEEE Trans. Electron Devices Vol. 53, (2006), p.2207.

Google Scholar

[5] T. FUJII, N. TSUYUKUCHI, Y. HIROSE, M. IWAYA, S. KAMIYAMA, H. AMANO and I. AKASAKI, Jpn. J. Appl. Phys. Vol. 46, (2007), p.115.

Google Scholar

[6] C. Yi, R. Wang, W. Huang, W. C. W. Tang, K. M. Lau and K. J. Chen, IEDM (2007), p.389.

Google Scholar

[7] R. N. Wang, Y. Cai and K. J. Chen, solid-state electronics Vol. 53, (2009), p.1.

Google Scholar

[8] B. Luo, J. W. Johnson, F. Ren, K. K. Allums, C. R. Abernathy, S. J. Pearton, A. M. Dabiran, A. M. Wowchack, C. J. Polley, P. P. Chow, D. Schoenfeld and A. G. Baca, Appl. Phys. Lett. Vol. 80, (2002), p.604.

DOI: 10.1063/1.1445809

Google Scholar

[9] X. W. Hu, A. P. Karmarkar, B. G. Jun, D. M. Fleetwood, R. D. Schrimpf, R. D. Geil, R. A. Weller, B. D. White, M. Bataiev, L. J. Brillson and U. K. Mishra, IEEE Trans. Nucl. Sci. Vol. 50, (2003), p.1791.

DOI: 10.1109/tns.2003.820792

Google Scholar

[10] X. W. Hu, B. K. Choi, H. J. Barnaby, D. M. Fleetwood, R. D. Schrimpf, S. C. Lee, S. Shojah-Ardalan, R. Wilkins, U. K. Mishra and R. W. Dettmer, IEEE Trans. Nucl. Sci. Vol. 51, (2004), p.293.

DOI: 10.1109/tns.2004.825077

Google Scholar

[11] B. Luo, J. W. Johnson, F. Ren, K. K. Allums, C. R. Abernathy, S. J. Pearton, R. Dwivedi, T. N. Forgarty, R. Wilkins, A. M. Dabiran, A. M. Wowchack, C. J. Polley, P. P. Chow and A. G. Baca, Appl. Phys. Lett. Vol. 79, (2001), p.2196.

DOI: 10.1063/1.1408606

Google Scholar

[12] J. W. McClory, J. C. Petrosky, J. M. Sattler and T. A . Jarzen, IEEE Trans. Nucl. Sci. Vol. 54, (2007), p. (1946).

Google Scholar