Phase Evolutions in the Metallic Precursors of the Ternary Copper-Indium-Gallium System

Article Preview

Abstract:

Two types of metallic precursors used for the growth of Cu (In,Ga)Se2 were deposited from a single CuInGa ternary target and binary alloy CuGa and CuIn targets, respectively. Phase evolutions in the precursors of the ternary copper-indium-gallium system were investigated over the temperature range from room temperature to 500°C. Grazing incidence X-ray diffraction (GIXRD) and scanning electron microscopy (SEM) were applied to characterize evolution of phases and surface morphology in the precursor layers. With annealing temperatures increased, phase evolutions of Cu9Ga4, Cu11In9, Cu16In9 and CuIn were observed. Surface morphology of the two types of precursors changed significantly, which could support the phase evolutions in the ternary Cu-In-Ga system for reactive annealing processes. The existence of the final Cu11In9 phase, which is the most favorable intermetallic phase for the formation of CuInSe2 and Cu (In,Ga)Se2 thin films, may be transformed by a speculated peritectoid reaction of In and Cu16In9 to Cu11In9 under In-rich condition.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

974-980

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Progress in Photovoltaics: Research and Applications 18 (2010) 346–352.

Google Scholar

[2] E. Wallin, U. Malm, T. Jarmar, O. Lundberg, M. Edoff, L. Stolt, Progress in Photovoltaics: Research and Applications 20 (2012) 851–854.

DOI: 10.1002/pip.2246

Google Scholar

[3] R.N. Bhattacharya, W. Batchelor, J.F. Hiltner, J.R. Sites, Applied Physics Letters 75 (1999) 1431-1433.

Google Scholar

[4] M. Marudachchalam, H. Hichri, R.W. Birkmire, W.N. Shafarman, J.M. Schultz, Applied Physics Letters 67 (26) (1995) 3978–3980.

Google Scholar

[5] W. Liu, J.G. Tian, Z.B. Li, Q. He, F.Y. Li, C.J. Li, Y. Sun, Semiconductor Science and Technology 24 (2009) 035019.

Google Scholar

[6] R. Kamada, W.N. Shafarmman, R.W. Birkmire, Solar Energy Materials and Solar Cells 94 (2010) 451-456.

Google Scholar

[7] F. Hergert, R. Hock, A. Weber, M. Purwins, J. Palm, V. Probst, Journal of Physics and Chemistry of Solids 66 (2005) 1903-(1907).

DOI: 10.1016/j.jpcs.2005.09.025

Google Scholar

[8] M. Purwins, A. Weber, P. Berwian, G. Müller, F. Hergert, S. Jost, R. Hock, Journal of Crystal Growth 287 (2006) 408-413.

DOI: 10.1016/j.jcrysgro.2005.11.054

Google Scholar

[9] K.H. Liao, C.Y. Su, Y.T. Ding, C.T. Pan, Applied Surface Science 263 (2012) 476-480.

Google Scholar

[10] G.S. Chen, J.C. Yang, Y.C. Chan, L.C. Yang, W. Huang, Solar Energy Materials and Solar Cells 93 (2009) 1351-1356.

Google Scholar

[11] C.Y. Su, W.H. Ho, H.C. Lin, C.Y. Nieh, S.C. Liang, Solar Energy Materials and Solar Cells 95 (2011) 261-263.

Google Scholar

[12] G.M. Hanket, W.N. Shafarman, B.E. McCandless, R.W. Birkmire, Journal of Applied Physics 102 (2007) 074922.

DOI: 10.1063/1.2787151

Google Scholar

[13] M. Purwins, R. Enderle, M. Schmid, P. Berwian, G. Müller, F. Hergert, S. Jost, R. Hock, Thin Solid Films 515 (2007) 5895-5898.

DOI: 10.1016/j.tsf.2006.12.090

Google Scholar

[14] W. Keppner, T. Klas, W. Körner, R. Wesche, G. Schatz, Physical Review Letters 54 (1985) 2371-2374.

Google Scholar

[15] C.H. Chung, S.D. Kim, H.J. Kim, F.O. Adurodija, K.H. Yoon, J. Song, Solid State Communications 126 (2003) 185-190.

DOI: 10.1016/s0038-1098(03)00108-x

Google Scholar

[16] H.K. Song, S.G. Kim, H.J. Kim, S.K. Kim, K.W. Kang, J.C. Lee, K.H. Yoon, Solar Energy Materials and Solar Cells 75 (2003) 145-153.

DOI: 10.1016/s0927-0248(02)00125-3

Google Scholar

[17] F.O. Adurodija, J. Song, S.D. Kim, S.H. Kwon, S.K. Kim, K.H. Yoon, B.T. Ahn, Thin Solid Films 338 (1999) 13-19.

DOI: 10.1016/s0040-6090(98)00358-7

Google Scholar

[18] V.F. Gremenok, E.P. Zaretskaya, V.B. Zalesski, K. Bente, W. Schmitz, R.W. Martin, H. Moller, Solar Energy Materials and Solar Cells 89 (2005) 129-137.

DOI: 10.1016/j.solmat.2004.11.014

Google Scholar

[19] H.K. Song, J.K. Jeong, H.J. Kim, S.K. Kim, K.H. Yoon, Thin Solid Films 435 (2003) 186-192.

Google Scholar

[20] N.G. Dhere, K.W. Lynn, Solar Energy Materials and Solar Cells 41/42 (1996) 271-279.

DOI: 10.1016/0927-0248(95)00146-8

Google Scholar