[1]
J. Singh, Fungal Problems in Historic Buildings, J. Archit. Conserv., 6 (2000), 17–37.
Google Scholar
[2]
J.E. Winandy, J.J. Morrell, Relationship between incipient decay, strength, and chemical composition of Douglas fir heartwood, Wood and Fiber Science, 25, 3 (1993) 278-288.
Google Scholar
[3]
M.E. Arias, J. Rodriguez, M.I. Perez, M. Hernandez, O. Polvillo, J.A. Gonzalez-Perez, F.J. Gonzalez-Vila, Analysis of chemical changes in Picea abies wood decayed by different Streptomyces strains showing evidence for biopulping procedures, Wood Sci Technol., 44 (2010).
DOI: 10.1007/s00226-009-0282-1
Google Scholar
[4]
K. Fackler, C. Gradinger, M. Schmutzer, C. Tavzes, I. Burgert, M. Schwanninger, B. Hinterstoisser, T. Watanabe, K. Messner, Biomodification of Wood with Selective White-Rot Fungi, Food Technol. Biotechnol. 45, 3 (2007) 269–276.
DOI: 10.1016/j.enzmictec.2007.07.016
Google Scholar
[6]
B.L. Illman, V.W. Yang, Bioremediation of Treated Wood with Fungi, in B.S. T.G. Townsend, H. Solo-Gabriele (Eds. ), Environmental Aspects of Treated Wood, Taylor& Francis, 2006, 413-426.
DOI: 10.1201/9781420006216.ch23
Google Scholar
[6]
S. Tsuchikawa, A review of recent near infrared research for wood and paper, Appl Spec Rev 42 (2007) 43–71.
Google Scholar
[7]
K. Fackler, M. Schmutzer, L. Manoch, M. Schwanninger, B. Hinterstoisser, T. Ters, K. Messner, C. Gradinger, Evaluation of the selectivity of white rot isolates using near infrared spectroscopic techniques, Enzyme Microb Tech 41 (2007) 881–887.
DOI: 10.1016/j.enzmictec.2007.07.016
Google Scholar
[8]
B. K Via, C.L. So, L.G. Eckhardt, T.F. Shupe, L.G. Groom, M. Stine, Response of near infrared diffuse reflectance spectra to blue stain and wood age, JNIRS 16 (2008) 71-74.
DOI: 10.1255/jnirs.756
Google Scholar
[9]
K. Fackler, M. Schwanninger, C. Gradinger, E. Srebotnik, B. Hinterstoisser, K. Messner, Fungal decay of spruce and beech wood assessed by near-infrared spectroscopy in combination with uni- and multivariate data analysis, Holzforschung, 61 (2007).
DOI: 10.1515/hf.2007.098
Google Scholar
[10]
European Committee for Standardization EN 113, Wood preservatives - Test method for determining the protective effectiveness against wood destroying basidiomycetes - Determination of the toxic values, (1996).
DOI: 10.3403/2604290
Google Scholar
[11]
European Committee for Standardization EN 84, Wood preservatives. Accelerated ageing of treated wood prior to biological testing. Leaching procedure, (1989).
DOI: 10.3403/00055990
Google Scholar
[12]
S. Tsuchikawa, H. Yonenobu, H.W. Siesler, Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method, Analyst, 130 (2005) 379–384.
DOI: 10.1039/b412759e
Google Scholar
[13]
B. Mohebby, Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood, Int Biodeter Biodeg 55 (2005) 247–251.
DOI: 10.1016/j.ibiod.2005.01.003
Google Scholar
[14]
A.C. Ritschkoff, Decay mechanisms of brown-rot fungi, PhD Thesis, VTT Publications (1996).
Google Scholar
[15]
F. Green T.L. Highley, Mechanism of Brown-Rot Decay: Paradigm or Paradox, Int Biodeter Biodeg 39, 2–3 (1997) 113–124.
DOI: 10.1016/s0964-8305(96)00063-7
Google Scholar
[16]
V. Valášková, P. Baldrian, Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus – production of extracellular enzymes and characterization of the major cellulases, Microbiology, 152, 12 (2006) 3613-3622.
DOI: 10.1099/mic.0.29149-0
Google Scholar
[17]
T.L. Highley, Cellulolytic activity of brown-rot and white-rot fungi on solid media, Holzforschung, 42 (1988) 211-216.
DOI: 10.1515/hfsg.1988.42.4.211
Google Scholar