[1]
J. M. Dinwoodie. Timber, its nature and behaviour. Van Nostrand Reinhold, (1979).
Google Scholar
[2]
T. Toratti. Creep of timber beams in a variable environment. Report no. 31. Helsinki (Finland): Helsinki University of Technology (1992).
Google Scholar
[3]
S. Svensson, T. Toratti. Mechanical response of wood perpendicular to grain when subjected to changes of humidity. Wood Sci Technol 36 (2002), 145–56.
DOI: 10.1007/s00226-001-0130-4
Google Scholar
[4]
A. Ranta-Maunus. Effects of climate and climate variations on strength. In: Thelandersson S, Larsen HJ, editors. Timber engineering. Chichester: John Wiley & Sons Incorporated (2003).
Google Scholar
[5]
J. Jönsson. Moisture induced stresses in timber structures, Technical Report TVBK-1031, Dissertation, Division of Structural Engineering, Lund University of Technology (2005).
Google Scholar
[6]
T. Gereke, P. Niemz. Moisture-induced stresses in spruce cross-laminates, Engineering Structures 32 (2010), 600-606.
DOI: 10.1016/j.engstruct.2009.11.006
Google Scholar
[7]
V. Angst, K.A. Malo. Moisture-induced stresses in glulam cross sections during wetting exposures. Wood Sci Technol. DOI 10. 1007/s00226-012-0493-8.
DOI: 10.1007/s00226-012-0493-8
Google Scholar
[8]
M. Fragiacomo, S. Fortino, D. Tononi, I. Usardi, T. Toratti. Moisture-induced stresses perpendicular to grain in timber sections exposed to European climates. Engineering Structures 33 (2011), 3071-3078.
DOI: 10.1016/j.engstruct.2011.06.018
Google Scholar
[9]
E. Frühwald, E. Serrano, T. Toratti, A. Emilsson, S. Thelandersson. Design of safe timber structures—how can we learn from failures in concrete, steel and timber? Report TVBK-3053. Sweden: Lund Institute of Technology (2007).
Google Scholar
[10]
COST Action E55. (2006-2011). Modelling of the performance of timber structures,. Information on: /http: /www. cost-e55. ethz. ch.
Google Scholar
[11]
S. Svensson, G. Turk, T. Hozjan. Predicting moisture state of timber members in a continuously varying climate, Engineering Structures 33 (2011), 3064-3070.
DOI: 10.1016/j.engstruct.2011.04.029
Google Scholar
[12]
H. L. Frandsen. Selected Constitutive models for simulating the hygromechanical response of wood. Dissertation no. 10. Dep. of Civil Engineering, Aalborg University (2007); ISSN: 1901-7294.
Google Scholar
[13]
A. J. Stamm. Wood and Cellulose Science. The Ronald Press Company (1964).
Google Scholar
[14]
Abaqus/Standard. Theory Manual. Version 6. 8. Dassault Systèms Simulia Corp. Providence (2008).
Google Scholar
[15]
Abaqus/Standard. User Subroutines Reference Manual. Version 6. 8. Dassault Systèms Simulia Corp. Providence (2008).
Google Scholar
[16]
J. Eitelberger, K. Hofstetter, S. V. Dvinskikh. A multi-scale approach for simulation of transient moisture transport processes in wood below the fiber saturation point. Composites Science and Technology 71 (2011), 1727-1738.
DOI: 10.1016/j.compscitech.2011.08.004
Google Scholar
[17]
H. L. Frandsen. Modelling of moisture transport in wood – State of the Art and Analytic Discussion. Wood Science and Timber Engineering, Paper no. 1, 2nd ed., ISSN-1395-7953 R0502, Dept. of Building Technology and Structural Engineering, Aalborg University (2005).
Google Scholar
[18]
L. Ahlgren. Moisture fixation in porous building materials. Division of Building Technology. Lund Institute of Technolosy (1972).
Google Scholar
[19]
S. Fortino, T. Toratti, A. L. Mendicino. Stress analysis of timber structures under variable humidity conditions by using a multi-Fickian moisture transfer model. 1st International Conference on Structures & Architecture (ICSA2010), Guimaraes, Portugal, July 21-23, 2010. Structures and Architecture. Paulo J. da Sousa Cruz Ed. - CRC Press, Taylor & Francis Group London. (2010).
DOI: 10.1201/b10428-59
Google Scholar
[20]
S. Fortino, A. Genoese, A. Genoese, L. Nunes, P. Palma. Numerical modelling of the hygro-thermal response of timber bridges during their service life: a monitoring case-study, submitted to Construction and Building Materials (2013).
DOI: 10.1016/j.conbuildmat.2013.06.009
Google Scholar