[1]
Hao Xiaohong, Research the alignment of grassland road based on driver's physiological and psychological reflection. Inner Mongolia agricultural university, master's degree thesis, (2010).
Google Scholar
[2]
Yao Na, Accidental analysis of prairie secondary road based on driver's psychological and physiological reflection. Inner Mongolia agricultural university, master's degree thesis, (2010).
Google Scholar
[3]
Hou Jianli, Research on the effect of grassland road alignment on driver's visual character and speed. Inner Mongolia agricultural university, master's degree thesis, (2011).
Google Scholar
[4]
Li Xianfeng, Chen Jianwei, Zhang Guang ect, Steppe region of a road traffic accident analysis, J. Communications Standardization. 2007 (12) 174-178.
Google Scholar
[5]
Zhang Quanfang, Wang Wei, Chen Zuoyuan etc. standardization of heart rate variability analysis, J. Journal of Practical Electrocardiology. 2010, 19 (5) 398-400.
Google Scholar
[6]
Bear, M.F., Connors, B.W. and Paradiso, M.A. 2001. Neuroscience: Exploring the Brain. Baltimore, MD: Lippincott Williams & Wilkins.
Google Scholar
[7]
Ming Dong, Tian Xihui, Yang Chunmei ect. Heart rate variability (HRV) signal spectral analysis method, J. Beijing Biomedical Engineering, 2001, 20(4): 252-274.
Google Scholar
[8]
Burr RL, Cowan MJ. AutoregressivesPeetralmodelsofheartratevariability, J. Electrocardiol, 1992, 10(2): 152. Heart Rate Standards of Measurement. Physiological Interpretation and Clinical Use. Task of the European Society Cardiology and the North American Society of Pacing and Electro-physiology Circulation. 1996 (17): 354.
DOI: 10.1111/j.1542-474x.1996.tb00275.x
Google Scholar
[9]
Yang Fusheng, Gao Shangkai, Biomedical Signal Processing, Beijing: Higher Education Press, (1996).
Google Scholar
[10]
European Heart Journal. (1996). Heart Rate Variability standard of measurement physiological interpretation, and clinical use. European Heart Journal, 17, 354-381.
DOI: 10.1093/oxfordjournals.eurheartj.a014868
Google Scholar
[11]
Hu Dayi, Guo Chengjun, Li Ruijie. Heart rate variability ─measurement standards, Physiological Interpretation and Clinical Application, J. China Medical Device Information. 1997, 3(4): 18-20.
Google Scholar
[12]
Hu Dayi, Guo Chengjun, Li Ruijie. Heart rate variability- measurement standards, Physiological Interpretation and Clinical Applications, J. China Medical Device Information. 1997, 3(6): 15-17.
Google Scholar
[13]
American Heart Association (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065.
DOI: 10.1161/01.cir.93.5.1043
Google Scholar
[14]
Hu Dayi, Guo Chengjun, Li Ruijie. Heart rate variability- measurement standards, Physiological Interpretation and Clinical Applications J. China Medical Device Information. 1997, 3(5): 17-20.
Google Scholar
[15]
Hu Dayi, Guo Chengjun, Li Ruijie. Heart rate variability- measurement standards, Physiological Interpretation and Clinical Applications Heart rate variability physiological research, J. China Medical Device Information. 1998, 4(1): 29-32.
Google Scholar
[16]
Hu Dayi, Guo Chengjun, Li Ruijie. Heart rate variability- measurement standards, Physiological Interpretation and Clinical Applications, J. China Medical Device Information. 1998, 4(2): 15-18.
Google Scholar
[17]
Hu Dayi, Guo Chengjun, Li Ruijie. Heart rate variability- measurement standards Physiological Interpretation and Clinical Applications Heart rate variability physiological research, J. China Medical Device Information. 1998, 4(3): 26-28.
Google Scholar
[18]
American College of Cardiology/American Heart Association (1999). Heart rate variability: Guidelines of ambulatory electrocardiography-Part III. Journal of American College of Cardiology, 34(3), 912–948.
Google Scholar
[19]
Bezerianos, A., Papadimitriou, S., & Alexopoulos, D. (1999). Radial basis function neural networks for the characterization of heart rate variability dynamics. Artificial Intelligence in Medicine, 15(3), 215–234.
DOI: 10.1016/s0933-3657(98)00055-4
Google Scholar
[20]
Zhu Wenyu, Tian Ren, Kong Xiaoxia, Human Physiology, third ed., Beijing: Peking University Medical Press, (2011).
Google Scholar
[21]
Bezerianos, A., Papadimitriou, S., & Alexopoulos, D. (1999). Radial basis function neural networks for the characterization of heart rate variability dynamics. Artificial Intelligence in Medicine, 15(3), 215–234.
DOI: 10.1016/s0933-3657(98)00055-4
Google Scholar
[22]
Batchinsky, A., Cooke, W., Kuusela, T., Jordan, B., Wang, J., & Cancio, L. (2007). Sympathetic nerve activity and heart rate variability during severe hemorrhagic shock in sheep. Autonomic Neuroscience: Basic and Clinical, 136, 43–51.
DOI: 10.1016/j.autneu.2007.03.004
Google Scholar
[23]
American College of Cardiology/American Heart Association (1999). Heart rate variability: Guidelines of ambulatory electrocardiography-Part III. Journal of American College of Cardiology, 34(3), 912–948.
Google Scholar
[24]
Chen Dongyan, Li Dongmei, Wang Shuzhong. Mathematical Modeling, Beijing: Science Press, 2011; Wang Geng, Wang Minsheng. Modern mathematical modeling methods, Beijing: Science Press, (2010).
Google Scholar
[25]
Ashley Craig, Yvonne Tran, Nirupama Wijesuriya, Peter Boord. A controlled investigation into the psychological determinants of fatigue, J. Biological Psychology, 2006, 72, 78-87.
DOI: 10.1016/j.biopsycho.2005.07.005
Google Scholar