Comparison of Growth Kinetic of Urinary Crystallites from Patients with Calcium Oxalate Stones with that from Healthy Subjects

Article Preview

Abstract:

The differences of growth kinetic of urinary crystallites from patients with CaOxa stones and healthy subjects were compared. With the increase of crystal growth time (t), the size of urinary crystallites from patients increased constantly from 10±9 μm at t=1 h to 50±45 μm at t=72 h, but the number of urinary crystallites decreased gradually from 1820±610 ind./mm2 at t=1 h to 220±98 ind./mm2 at t=72 h, indicating that the formation process of crystallites in lithogenic urine was ascribed to growth control. In contrast, for healthy subjects, the number of crystallites increased from 1650±850 ind./mm2 at t=1 h to 1800±830 ind./mm2 at t=72 h. However, the particle size was slowly increased from 7±5 μm at t=1 h to 14±13 μm at t=72 h, while the sizes of most urinary crystallites were still less than 20 μm, indicating that the growth process of crystallites in healthy urine was dominated by nucleation control. The differences mentioned above are mainly attributed to that both the concentration and the activity of the inhibitors in healthy urine were higher than those in lithogenic urine, and the inhibitors in healthy urine can inhibit the growth and aggregation of urinary crystallites more effectively. This result can help to elucidate the renal-calculi formation mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

1016-1019

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Bazin, M. Daudon, C. Combes, C. Rey: Chem. Rev., 112(2012), 5092.

Google Scholar

[2] B. Grohe, S. Hug, A. Langdon, J. Jalkanen, K. A. Rogers, H. A. Goldberg, M. Karttunen, G. K. Hunter: Langmuir, 28(2012), 12182.

DOI: 10.1021/la3018985

Google Scholar

[3] T. Lee, Y. C. Lin: Cryst. Growth Des., 11(2011), 2973.

Google Scholar

[4] U. Al-Atar, A. A. Bokov, D. Marshall, J. M. H. Teichman, B. D. Gates, Z. G. Ye, N. R. Branda: Chem. Mater., 22(2010), 1318.

DOI: 10.1021/cm901751g

Google Scholar

[5] M. Daudon, C. Hennequin, G. Boujelben, B. Lacour, P. Jungers: Kidney Int., 67(2005), (1934).

DOI: 10.1111/j.1523-1755.2005.00292.x

Google Scholar

[6] M. Daudon, P. Jungers: Nephron. Physiol., 98(2004), 31.

Google Scholar

[7] W. G. Robertson, M. Peacock, R. W. Marshall, D. H. Marshall, B. E. Nordin: New Engl. J. Med., 294(1976), 249.

Google Scholar

[8] R. E. Abdel-Halim: Scand. J. Urol. Nephrol., 27(1993), 145.

Google Scholar

[9] J. A. Wesson, V. Ganne, A. M. Beshensky, J. G. Kleinman: Urol. Res., 33(2005), 206.

Google Scholar

[10] J. M. Baumann, B. Affolter, U. Caprez, C. Clivaz, Z. Glück, R. Weber: Urol. Int., 79(2007), 267.

DOI: 10.1159/000107961

Google Scholar

[11] P. O. Schwille, A. Schmiedl, Herrmann, J. Fan, D. Gottlieb, M. Manoharan, J. Wipplinger: Urol. Res., 27(1999), 117.

Google Scholar

[12] Y. M. Michelacci, R. Q. Glashan, N. Schor: Kidney Int., 36(1989), 1022.

Google Scholar

[13] G. Rajagopal: Ind. J. Exp. Biol., 22(1984), 391.

Google Scholar

[14] T. Yasui, K. Fujita, Y. Hayashi, K. Ueda: Urol. Res., 27(1999), 225.

Google Scholar

[15] H. Peng, J. M. Ouyang, X. Q. Yao, R. E. Yang: Int. J. Nanomed., 7(2012): 4727.

Google Scholar