Microwave-Assisted Parallel Synthesis and Antioxidant Activity of Aryloxy-Acetyl Ferrocenes Derivatives

Article Preview

Abstract:

Seven novel aryloxy-acetyl ferrocene derivatives were parallel synthesized under microwave irradiation conditions from chloroacetyl ferrocenes and substituted phenols with the aim of obtaining potential antioxidant agents. The target compounds were identified by IR, 1H NMR, MS and elemental analysis, and their antioxidant assays indicated that all the aryloxy-acetyl ferrocenes had certain effect on eliminating 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Their antioxidation activity significantly improved when rising the temperature until the temperature was 35°C. The structure-activity relationship analysis showed the electron-donating substituted aryloxyl group could strengthen the radical scavenging abilities, while the electron-withdrawing effects would block antioxidant abilities.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

1085-1088

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. B. A. El-Gazzar, M. M. Youssef, A.M.S. Youssef, A.A. Abu-Hashem and F.A. Badria: Eur. J. Med. Chem. Vol. 44 (2009), p.609.

DOI: 10.1016/j.ejmech.2008.03.022

Google Scholar

[2] G.G. Wang, X.C. Li and H.P. Zeng: Acta Chim. Sinica Vol. 67 (2009), p.974.

Google Scholar

[3] X.C. Huang, J.S. Zheng, T.F. Chen, Y.B. Zhang, Y. Luo and W.J. Zheng: Chem. J. Chin. Univ. Vol. 33 (2012), p.976.

Google Scholar

[4] Z.G. Chen, C.N. Wang, P.F. Zhao, Y. Wang and L.Y. Zhou: Acta Chim. Sinica Vol. 68 (2010), p.2347.

Google Scholar

[5] R.D. Miao, J. Wei, M.H. Lv, Y. Cai, Y.P. Du, X.P. Hui and Q. Wang: Eur. J. Med. Chem. Vol. 46 (2011), p.5000.

Google Scholar

[6] M.L. Sun, B.F. Ruan, Q. Zhang, Z.D. Liu, S.L. Li, J.Y. Wu, B.K. Jin, J.X. Yang, S.Y. Zhang and Y.P. Tian: J. Organomet. Chem. Vol. 696 (2011), p.3180.

Google Scholar

[7] Z. Jin, A.H. Huo, T. Liu, Y. Hu, J.B. Liu and J.X. Fang: J. Ogranomet. Chem. Vol. 690 (2005), p.1226.

Google Scholar

[8] L.R. Popova, V.N. Babin and Y.A. Belousov: Appl. Ogranomet. Chem. Vol. 7 (1993), p.85.

Google Scholar

[9] E.R. Milaeva, S.I. Filimonova, N.N. Meleshonkova, L.G. Dubova, E.F. Shevtsova, S.O. Bachurin and N.S. Zefirov: Bioinorg. Chem. Appl. Vol. 2010 (2010), p.165482.

DOI: 10.1155/2010/165482

Google Scholar

[10] B. Jiang, X. Wang, F. Shi, S.J. Tu, T. Ai, A. Ballew and G.G. Li: J. Org. Chem. Vol. 74 (2009), p.9486.

Google Scholar

[11] J.P. Zhang, J. Ding, N. Ma, B. Jiang, LC. Xu and S.J. Tu: J. Heterocyclic Chem. Vol. 50 (2013), p.66.

Google Scholar

[12] S.F. Ekti and D. Hür: Inorg. Chem. Commun. Vol. 11 (2008), p.1027.

Google Scholar