[1]
M. J. Latham and M. J. Wolin: Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environ. Microbiol, Vol. 34 (1977), p.97–301.
DOI: 10.1128/aem.34.3.297-301.1977
Google Scholar
[2]
J. Winter and R. S. Wolfe: Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbio, Vol. 4 (1980), p.73–79.
DOI: 10.1007/bf00407031
Google Scholar
[3]
R. K. Thauer, K. Jungermann and K. Decker: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev., Vol. 41 (1977), p.100–180.
DOI: 10.1128/br.41.1.100-180.1977
Google Scholar
[4]
T. Kosaka et al: The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res. Vol. 18 (2008), pp.442-448.
DOI: 10.1101/gr.7136508
Google Scholar
[5]
D. R. Boone, R. L. Johnson and Y. Liu: Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and implications in the measurement of KM for H2 or formate uptake. Appl. Environ. Microbiol. Vol. 55 (1989).
DOI: 10.1128/aem.55.7.1735-1741.1989
Google Scholar
[6]
X. Dong and A. J. M. Stams: Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe, Vol. 1 (1995), pp.35-39.
DOI: 10.1016/s1075-9964(95)80405-6
Google Scholar
[7]
X. Dong, C. M. Plugge and A. J. M. Stams: Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl. Environ. Microbiol. Vol. 60 (1994), p.2834–2838.
DOI: 10.1128/aem.60.8.2834-2838.1994
Google Scholar
[8]
F. A. M. De Bok, E. H. Roze andA. J. M. Stams: Hydrogenases and formate dehydrogenases of Syntrophobacter fumaroxidans. Antonie van Leeuwenhoek, Vol. 81 (2002), p.283–291.
DOI: 10.1023/a:1020539323190
Google Scholar
[9]
C. M. Plugge, M. Balk and A. J. M. Stams: Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int. J. Syst. Evol. Microbiol., Vol. 52 (2002).
DOI: 10.1099/00207713-52-2-391
Google Scholar
[10]
W. Martin and M. Muller: The hydrogen hypothesis for the first eukaryote, Nature, Vol. 5 (1998), pp.37-41.
Google Scholar
[11]
M.W. Gray and W. F. Doolittle: Has the endosymbiont hypothesis been proven? Microbiol. Rev.
DOI: 10.1128/mr.46.1.1-42.1982
Google Scholar
[12]
T. Cavalier-Smith: The origin of eukaryote and archaebacterial cells. Ann. NY Acad. Sci., Vol. 503 (1987), pp.7-54.
DOI: 10.1111/j.1749-6632.1987.tb40596.x
Google Scholar
[13]
W. Zillig et al: Did eukaryotes originate by a fusion event? Endocytobiosis Cell Res.
Google Scholar
[14]
J. A. Lake and M. C. Rivera: Was the nucleus the first endosymbiont? Proc. Natl Acad. Sci., Vol. 91 (1994), p.2880–2881.
DOI: 10.1073/pnas.91.8.2880
Google Scholar
[15]
B. Rosenthal et al: Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica. J. Bacteriol., Vol. 179 (1997), p.3736–3745.
DOI: 10.1128/jb.179.11.3736-3745.1997
Google Scholar
[16]
M. Muller: Energy metabolism of protozoa without mitochondria. Annu. Rev. Microbiol., Vol. 42 (1988), p.465–488.
DOI: 10.1146/annurev.mi.42.100188.002341
Google Scholar
[17]
C. Woese, O. Kandler and M. L. Wheelis: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eukarya. Proc. Natl Acad. Sci., Vol. 87 (1990), p.4576–4579.
DOI: 10.1073/pnas.87.12.4576
Google Scholar
[18]
E. T. N. Bui, P. J. Bradley and P. J. Johnson: A common evolutionary origin for mitochondria and hydrogenosomes. Proc. Natl Acad. Sci., Vol. 93 (1996), p.9651–9656.
DOI: 10.1073/pnas.93.18.9651
Google Scholar
[19]
B. Rosenthal et al: Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica. J. Bacteriol., Vol. 179 (1997), p.3736–3745.
DOI: 10.1128/jb.179.11.3736-3745.1997
Google Scholar
[20]
L. B. Sa´nchez and M. Mu¨ller: Purification and characterization of the acetate forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate protist, Giardia lamblia. FEBS Lett., Vol. 378 (1996), p.240–244.
DOI: 10.1016/0014-5793(95)01463-2
Google Scholar
[21]
P. Scho¨nheit and T. Scha¨fer: Metabolism of hyperthermophiles. World. J. Microbiol. Biotechnol., Vol. 11 (1995), p.26–57.
Google Scholar
[22]
P. W. Keeling and W. F. Doolittle: Evidence that eukaryotic triosephosphate isomerase is of alphaproteobacterial origin. Proc. Natl Acad. Sci., Vol. 94 (1997), p.1270–1275.
DOI: 10.1073/pnas.94.4.1270
Google Scholar
[23]
W. Martin and C. Schnarrenberger: The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr. Genet., Vol. 32 (1997), p.1–18.
DOI: 10.1007/s002940050241
Google Scholar
[24]
R. K. Thauer, R. Hedderich, and R. Fischer: in Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, edited by J. G. Ferry/Chapman & Hall Publishing, New York, (1993).
Google Scholar
[25]
R. Conrad: Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2, and NO). Microbiol. Rev., Vol. 60 (1996), p.609–640.
DOI: 10.1128/mr.60.4.609-640.1996
Google Scholar
[26]
M. P. Bryant, E. A. Wolin and M. J. Wolin et al: Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol., Vol. 59 (1967), p.20–31.
DOI: 10.1007/bf00406313
Google Scholar
[27]
T. M. Embley, et al: Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc. R. Soc. Lond., Vol. 262 (1995), p.87–93.
DOI: 10.1098/rspb.1995.0180
Google Scholar
[28]
H. Brinkmann, and W. Martin: Higher plant chloroplast and cytosolic 3-phosphoglycerate kinases: a case of endosymbiotic gene replacement. Plant. Mol. Biol., Vol. 30 (1996), p.65–75.
DOI: 10.1007/bf00017803
Google Scholar
[29]
J. F. Kasting: Earth's early atmosphere. Science, Vol. 259 (1993), p.920–926.
Google Scholar
[30]
B. J. Finlay, T. M. Embley and T. Fenchel: A new polymorphic methanogen, closely related to Methanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliate Trimyema sp. J. Gen. Microbiol., Vol. 139 (1993), p.371–378.
DOI: 10.1099/00221287-139-2-371
Google Scholar