Endosymbiotic Association between Methanogens and Hydrogen-Producing Organisms - Hydrogen Hypothesis

Article Preview

Abstract:

Many archaebacteria are strictly dependent upon H2 for their ATP production. Moreover, for many methanogens (the strictly lithoautotrophic forms), H2O, CO2 and acetate are the sole source of both energy and carbon, all of which are waste products of the symbionts anaerobic metabolism. The fact that methanogens associate with hydrogen-producing organisms means endosymbiotic methanogens cling not to free-living eubacteria, but hydrogenosomes themselves in the cytosol of amitochondriate protists. This has given rise to the theory that the eukaryotic cell originated from syntrophic interactions between bacteria and archaea. We call this new hypothesis for the origin of eukaryotic cells as hydrogen hypothesis.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

1302-1307

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. J. Latham and M. J. Wolin: Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environ. Microbiol, Vol. 34 (1977), p.97–301.

DOI: 10.1128/aem.34.3.297-301.1977

Google Scholar

[2] J. Winter and R. S. Wolfe: Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbio, Vol. 4 (1980), p.73–79.

DOI: 10.1007/bf00407031

Google Scholar

[3] R. K. Thauer, K. Jungermann and K. Decker: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev., Vol. 41 (1977), p.100–180.

DOI: 10.1128/br.41.1.100-180.1977

Google Scholar

[4] T. Kosaka et al: The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res. Vol. 18 (2008), pp.442-448.

DOI: 10.1101/gr.7136508

Google Scholar

[5] D. R. Boone, R. L. Johnson and Y. Liu: Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and implications in the measurement of KM for H2 or formate uptake. Appl. Environ. Microbiol. Vol. 55 (1989).

DOI: 10.1128/aem.55.7.1735-1741.1989

Google Scholar

[6] X. Dong and A. J. M. Stams: Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe, Vol. 1 (1995), pp.35-39.

DOI: 10.1016/s1075-9964(95)80405-6

Google Scholar

[7] X. Dong, C. M. Plugge and A. J. M. Stams: Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl. Environ. Microbiol. Vol. 60 (1994), p.2834–2838.

DOI: 10.1128/aem.60.8.2834-2838.1994

Google Scholar

[8] F. A. M. De Bok, E. H. Roze andA. J. M. Stams: Hydrogenases and formate dehydrogenases of Syntrophobacter fumaroxidans. Antonie van Leeuwenhoek, Vol. 81 (2002), p.283–291.

DOI: 10.1023/a:1020539323190

Google Scholar

[9] C. M. Plugge, M. Balk and A. J. M. Stams: Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int. J. Syst. Evol. Microbiol., Vol. 52 (2002).

DOI: 10.1099/00207713-52-2-391

Google Scholar

[10] W. Martin and M. Muller: The hydrogen hypothesis for the first eukaryote, Nature, Vol. 5 (1998), pp.37-41.

Google Scholar

[11] M.W. Gray and W. F. Doolittle: Has the endosymbiont hypothesis been proven? Microbiol. Rev.

DOI: 10.1128/mr.46.1.1-42.1982

Google Scholar

[12] T. Cavalier-Smith: The origin of eukaryote and archaebacterial cells. Ann. NY Acad. Sci., Vol. 503 (1987), pp.7-54.

DOI: 10.1111/j.1749-6632.1987.tb40596.x

Google Scholar

[13] W. Zillig et al: Did eukaryotes originate by a fusion event? Endocytobiosis Cell Res.

Google Scholar

[14] J. A. Lake and M. C. Rivera: Was the nucleus the first endosymbiont? Proc. Natl Acad. Sci., Vol. 91 (1994), p.2880–2881.

DOI: 10.1073/pnas.91.8.2880

Google Scholar

[15] B. Rosenthal et al: Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica. J. Bacteriol., Vol. 179 (1997), p.3736–3745.

DOI: 10.1128/jb.179.11.3736-3745.1997

Google Scholar

[16] M. Muller: Energy metabolism of protozoa without mitochondria. Annu. Rev. Microbiol., Vol. 42 (1988), p.465–488.

DOI: 10.1146/annurev.mi.42.100188.002341

Google Scholar

[17] C. Woese, O. Kandler and M. L. Wheelis: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eukarya. Proc. Natl Acad. Sci., Vol. 87 (1990), p.4576–4579.

DOI: 10.1073/pnas.87.12.4576

Google Scholar

[18] E. T. N. Bui, P. J. Bradley and P. J. Johnson: A common evolutionary origin for mitochondria and hydrogenosomes. Proc. Natl Acad. Sci., Vol. 93 (1996), p.9651–9656.

DOI: 10.1073/pnas.93.18.9651

Google Scholar

[19] B. Rosenthal et al: Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica. J. Bacteriol., Vol. 179 (1997), p.3736–3745.

DOI: 10.1128/jb.179.11.3736-3745.1997

Google Scholar

[20] L. B. Sa´nchez and M. Mu¨ller: Purification and characterization of the acetate forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate protist, Giardia lamblia. FEBS Lett., Vol. 378 (1996), p.240–244.

DOI: 10.1016/0014-5793(95)01463-2

Google Scholar

[21] P. Scho¨nheit and T. Scha¨fer: Metabolism of hyperthermophiles. World. J. Microbiol. Biotechnol., Vol. 11 (1995), p.26–57.

Google Scholar

[22] P. W. Keeling and W. F. Doolittle: Evidence that eukaryotic triosephosphate isomerase is of alphaproteobacterial origin. Proc. Natl Acad. Sci., Vol. 94 (1997), p.1270–1275.

DOI: 10.1073/pnas.94.4.1270

Google Scholar

[23] W. Martin and C. Schnarrenberger: The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr. Genet., Vol. 32 (1997), p.1–18.

DOI: 10.1007/s002940050241

Google Scholar

[24] R. K. Thauer, R. Hedderich, and R. Fischer: in Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, edited by J. G. Ferry/Chapman & Hall Publishing, New York, (1993).

Google Scholar

[25] R. Conrad: Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2, and NO). Microbiol. Rev., Vol. 60 (1996), p.609–640.

DOI: 10.1128/mr.60.4.609-640.1996

Google Scholar

[26] M. P. Bryant, E. A. Wolin and M. J. Wolin et al: Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol., Vol. 59 (1967), p.20–31.

DOI: 10.1007/bf00406313

Google Scholar

[27] T. M. Embley, et al: Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc. R. Soc. Lond., Vol. 262 (1995), p.87–93.

DOI: 10.1098/rspb.1995.0180

Google Scholar

[28] H. Brinkmann, and W. Martin: Higher plant chloroplast and cytosolic 3-phosphoglycerate kinases: a case of endosymbiotic gene replacement. Plant. Mol. Biol., Vol. 30 (1996), p.65–75.

DOI: 10.1007/bf00017803

Google Scholar

[29] J. F. Kasting: Earth's early atmosphere. Science, Vol. 259 (1993), p.920–926.

Google Scholar

[30] B. J. Finlay, T. M. Embley and T. Fenchel: A new polymorphic methanogen, closely related to Methanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliate Trimyema sp. J. Gen. Microbiol., Vol. 139 (1993), p.371–378.

DOI: 10.1099/00221287-139-2-371

Google Scholar