[1]
A.K. Stone, M.T. Nickerson. Formation and functionality of whey protein isolatee (kappa-, iota-, and lambda-type) carrageenan electrostatic complexes. Food Hydrocolloids, 27 (2012), pp.271-277.
DOI: 10.1016/j.foodhyd.2011.08.006
Google Scholar
[2]
G. Maude, S. L. Christelle. Attractive interactions between selected anionic exopolysaccharides and milk proteins. Food Hydrocolloids, 22 (2008), p.1425–1434.
DOI: 10.1016/j.foodhyd.2007.09.001
Google Scholar
[3]
T. Amatayakul, A.L. Halmos, F. Sherkat, N.P. Shah. Physical characteristics of yoghurts made using exopolysaccharide producing starter cultures and varying casein to whey protein ratios. International Dairy Journal, 16(2006), p.40–51.
DOI: 10.1016/j.idairyj.2005.01.004
Google Scholar
[4]
A.N. Hassan, J.F. Frank, K.A. Schmidt, S.I. Shalabi. Rheological properties of yogurt made with encapsulated nonropy lactic cultures. Journal of Dairy Science, 79 (1996), p.2091–(2097).
DOI: 10.3168/jds.s0022-0302(96)76582-7
Google Scholar
[5]
D.B. Perry, D.J. McMahon, C.J. Oberg. Effect of EPS-producing cultures on moisture retention in low-fat Mozzarella cheese. Journal of Dairy Science, 80( 1997), p.799–805.
DOI: 10.3168/jds.s0022-0302(97)76000-4
Google Scholar
[6]
M. Gulzar, S. Bouhallab, R. Jeantet, P. Schuck, T. Croguennec. Influence of pH on the dry heat-induced denaturation /aggregation of whey proteins. Food Chemistry, 129 (2011), p.110–116.
DOI: 10.1016/j.foodchem.2011.04.037
Google Scholar
[7]
B. Vardhanabhuti, U. Yucel, J.N. Coupland, E.A. Foegeding. Interactions between β-lactoglobulin and dextran sulfate at near neutral pH and their effect on thermal stability. Food Hydrocolloids, 23 (2009 ), p.1511–1520.
DOI: 10.1016/j.foodhyd.2008.09.006
Google Scholar
[8]
Q.M. Rua, Y.W. Wang, J.Y. Lee, Y.T. Ding, Q.R. Huang. Turbidity and rheological properties of bovine serum albumin/pectin coacervates: Effect of salt concentration and initial protein/polysaccharide ratio. Carbohydrate Polymers, 88( 2012), P. 838–846.
DOI: 10.1016/j.carbpol.2012.01.019
Google Scholar
[9]
B. Fang, M. Zhang, L. Jiang, H. Jing, F.Z. Ren. Influence of pH on the structure and oleic acid binding ability of bovine a-Lactalbumin. Protein Journal, 31(2012), pp.564-572.
DOI: 10.1007/s10930-012-9434-5
Google Scholar
[10]
A.A. Pereza, C.R. Carraraa, C.C. Sánchezb, J.M. Rodríguez Patinob, L.G. Santiago. Interactions between milk whey protein and polysaccharide in solution. Food Chemistry, 116(2009), pp.104-113.
DOI: 10.1016/j.foodchem.2009.02.017
Google Scholar
[11]
N. Stânciuc, G. Râpeanu, G. Bahrim, I. Aprodu. pH and heat-induced structural changes of bovine apo-a-lactalbumin. Food Chemistry, 131 (2012), pp.956-963.
DOI: 10.1016/j.foodchem.2011.09.087
Google Scholar
[12]
G. Maude., S.L. Christelle. Attractive interactions between selected anionic exopolysaccharides and milk proteins. Food Hydrocolloids, 22 (2008), p.1425–1434.
DOI: 10.1016/j.foodhyd.2007.09.001
Google Scholar
[13]
F. Weinbreck, R. de Vries, P. Schrooyen, C. G. de Kruif. Complex coacervation of whey proteins and gum arabic. Biomacromolecules, 4(2003), pp.293-303.
DOI: 10.1021/bm025667n
Google Scholar
[14]
C.L. Cooper, P.L. Dubin, A.B. Kayitmazer, S. Turksen. Polyelectrolyte–protein complexes. Current Opinion in Colloid & Interface Science, 10 (2005), pp.52-78.
DOI: 10.1016/j.cocis.2005.05.007
Google Scholar
[15]
K. Kaibara, T. Okazaki,H. B. Bohidar, P. L. Dubin. pH-inducedcoacervation in complexes of bovine serum albumin and cationic polyelectrolytes. Biomacromolecules, 1(2000), pp.100-107.
DOI: 10.1021/bm990006k
Google Scholar
[16]
I. Ayala-Hernándeza, A. Hassanb, H.D. Goffa, R.M. de Orduñaa, M. Corredig. Production, isolation and characterization of exopolysaccharides produced by Lactococcuslactis subsp. cremoris JFR1 and their interaction with milk proteins: Effect of pH and media composition. International Dairy Journal, l18 (2008).
DOI: 10.1016/j.idairyj.2008.06.008
Google Scholar