Evaluation of the Potential of Chlorella sp. for Biodiesel Production

Article Preview

Abstract:

The type and amount of lipid produced by microalgae directly influence the quality of the achived biodiesel. This study is to report the properties of extracted lipid profile analysis of marine microalgae species Chlorella sp. The extracted lipid is further converted to methyl esters or biodiesel by acid-catalyzed transesterification. Scanning electron microscope (SEM), Gas chromatography (GC) and Fourier Transform Infrared spectroscopy (FT-IR) are analytical instruments for evaluation the potential of microalgae lipid in biodiesel production. The result showed that our marine microalgae was confirmed as interesting candidate for biodiesel application due to its high lipid content, high biodiesel yield, high cetane (CN) number, low iodine value (IV) and FT-IR spectrum close to crude palm oil and crude palm oil biodiesel.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

2438-2444

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Chen, T. Liu, X. Chen, L. Chen, W. Zhang, J. Wang: Eur. J. Lipid Sci. Technol. Vol. 114, (2012) p.205.

Google Scholar

[2] S. Rasoul-Amini, N. Montazeri-Najafubady, M.A. Mobasher, S. Hoseini-Alhushemi and Y. Ghasemi: Appl. Energy Vol. 88, (2011) p.3354.

DOI: 10.1016/j.apenergy.2010.12.040

Google Scholar

[3] Y. Christi: Biotechnol. Adv. Vol. 25, (2007) p.294.

Google Scholar

[4] S.K. Hoekman, A. Broch, C. Robbins, E. J Ceniceros and M. Natarajan: Renew. Sust. Energy Rev. Vol. 16, (2012) p.143.

Google Scholar

[5] A. Demirbas: Energy Policy. Vol. 35, (2007) p.4661.

Google Scholar

[6] G.H. Huang, F. Chen, D. Wei, X.W. Zhang, and C. Gu: Appl. Energy Vol. 87, (2010) p.38.

Google Scholar

[7] A. Singh, S.I. Olsen, and P.S. Nigam: J. Chem. Technol. Vol. 86, (2011) p.1349.

Google Scholar

[8] R.L. Guillard, and J.H. Ryther: Can. J. Microbiol. Vol. 18, (1962) p.229.

Google Scholar

[9] M. A. Kaluzny, L. A. Duncan, M. V. Merritt and D. E. Eppse: J. Lipid Res. Vol. 26, E. G. Primel and P. C. Abreu: Biomass Bioenerg. Vol. 35, (2011) p.1533.

Google Scholar

[11] A. Nascimento, S. S. I Marques, I. T. D. Cabanelas, S. A. Pereira, J. I. Druzian, C. O. de Souza, D.V. Vich, G. C. de Carvalho and M. A. Nascimento: Bioenergy Res. (2012) DOI 10. 1007/s12155-012-9222-2.

DOI: 10.1007/s12155-012-9222-2

Google Scholar

[12] P. Kalayasiri, N. Jeyashoke and K. Krisnangkura: J. Am. Oil Chem. Soc. Vol. 73 (1996), p.471.

Google Scholar

[13] K. Krisnangkura: J. Am. Oil Chem. Soc. Vol. 63 (1986), p.552.

Google Scholar

[14] G. Knothe: Fuel Process Technol. Vol. 88, (2007) p.669.

Google Scholar

[15] Z. Y. Lin, G. C. Wang and B.C. Zhou, Effect on iron of growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol., 2008, 99, 4717-4722.

DOI: 10.1016/j.biortech.2007.09.073

Google Scholar

[16] E.C. Franciso, D. B Neves, EJ. Jacob-Lopes, and T. T. France: J. Chem. Technol Biotechnol. Vol. 85 (2010), p.395.

Google Scholar

[17] A.F. Talebi, S. K. M ohtashami, M. Tsbatabaei, M. Tohidfar, A. Bagheri, M. Zeinalabedini, H. H. Mirzaei, M. Mirzajanzadeh, S. M. Shafaroudi and S. Bakhtiari: Algal Res. (2013) DOI 10. 1016/j. algal. 2013. 04. 003.

DOI: 10.1016/j.algal.2013.04.003

Google Scholar