[1]
Liao, L., Liu, T. X., Zhao, M. M., Cui, C., Yuan, B. E., Tang, S., & Yang, F. Functional, nutritional and conformational changes from deamidation of wheat gluten with succinic acid and citric acid. Food Chemistry, 123(1), 123-130. (2010).
DOI: 10.1016/j.foodchem.2010.04.017
Google Scholar
[2]
Shen, L., & Tang, C. H. Microfluidization as a potential technique to modify surface properties of soy protein isolate. Food Research International, 48(1), 108-118. (2012).
DOI: 10.1016/j.foodres.2012.03.006
Google Scholar
[3]
Huang, K. L., Yin, S. W., & Yang, X. Q. Effect of Micro-fluidization Treatment on Conformational and Functional Properties of Red Bean (Phaseolus angularis) Protein Isolates. Modern Food Science and Technology (In Chinese), 27(9), 1062-1065. (2011).
Google Scholar
[4]
Oboroceanu, D., Wang, L., Kroes-Nijboer, A., Brodkorb, A., Venema, P., Magner, E., & Auty, M. A. The effect of high pressure microfluidization on the structure and length distribution of whey protein fibrils. International Dairy Journal, 21(10), 823-830. (2011).
DOI: 10.1016/j.idairyj.2011.03.015
Google Scholar
[5]
Petruccelli, S., & Añón, M. C. pH-induced modifications in the thermal stability of soybean protein isolates. Journal of agricultural and food chemistry, 44(10), 3005-3009. (1996).
DOI: 10.1021/jf9600061
Google Scholar
[6]
Lakemond, C. M., de Jongh, H. H., Hessing, M., Gruppen, H., & Voragen, A. G. Heat denaturation of soy glycinin: influence of pH and ionic strength on molecular structure. Journal of agricultural and food chemistry, 48(6), 1991-1995. (2000).
DOI: 10.1021/jf9908704
Google Scholar
[7]
A. Torbica, M. Antov, J. Mastilović, D. Knežević. The influence of changes in gluten complex structure on technological quality of wheat (Triticum aestivum L. ). Food Research International, 40, 1038–1045. (2007).
DOI: 10.1016/j.foodres.2007.05.009
Google Scholar
[8]
Liu, G. Q., Yan, N.J., Zhao L., etc. Effect of Frozen Storage on the Secondary Structure of Wheat Gluten. Journal of South China University of Technology (Natural Science Edition), 5, 115-120. (2012).
Google Scholar
[9]
A.M. Andrade, P. Chacon, J.J. Merelo, F. Moran, Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised leaning neural network, Protein Eng. 6 (1993) 383–390.
DOI: 10.1093/protein/6.4.383
Google Scholar
[10]
L. Whitmore, B.A. Wallace. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism data, Nucleic Acids Res. 32 (1994) W668–W673.
DOI: 10.1093/nar/gkh371
Google Scholar
[11]
Kwaambwa, H. M., and R. Maikokera. Infrared and circular dichroism spectroscopic characterisation of secondary structure components of a water treatment coagulant protein extracted from< i> Moringa oleifera</i> seeds., Colloids and Surfaces B: Biointerfaces 64. 1 (2008).
DOI: 10.1016/j.colsurfb.2008.01.014
Google Scholar