A Review on the Binary Oxide Nanomaterials for the Electrochemical Performance

Article Preview

Abstract:

Recently, many research efforts have been devoted to developing new strategies for fabricating oxide nanomaterials owing to their widespread potential applications. In this article we review the current research activities on the fabrication of inorganic oxide nanomaterials. The application of oxide nanostructured materials in the field of lithium ion batteries will be obtained in the mainly parts of paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-14

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Buqa, D. Goers, M. Holzapfel, M. E. Spahr, P. Novak, J. Electrochem. Soc., Vol. 152 (2005), p. A474.

DOI: 10.1149/1.1851055

Google Scholar

[2] P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat. Mater., Vol. 5 (2006), p.567.

Google Scholar

[3] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature, Vol. 407 (2000), p.496.

Google Scholar

[4] N. Du, H. Zhang, B. Chen, J. B. Wu, X. Y. Ma, Z. H. Liu, Y. Q. Zhang, D. Yang, X. H. Huang, J. P. Tu, Adv. Mater., Vol. 19 (2007), p.4505.

Google Scholar

[5] N. A. Chernova, M. Roppolo, A. C. Dillon, M. S. Whittingham, J. Mater. Chem., Vol. 19 (2009), p.2526.

Google Scholar

[6] M. G. Bawendi, M. L. Steigerwald, L. E. Brus, Annu. Rev. Phys. Chem., Vol. 41 (1990), p.477.

Google Scholar

[7] A. P. Alivisatos, Sci. Am., Vol. 285 (2001), p.66.

Google Scholar

[8] M. A. El-Sayed, Acc. Chem. Res., Vol. 34 (2001), p.257.

Google Scholar

[9] J. Y. Ying, Chem. Eng. Sci., Vol. 61 (2006), p.1540.

Google Scholar

[7] Y. Yin, A. P. Alivisatos, Nature, Vol. 437 (2005), p.664.

Google Scholar

[8] M. Grzelczak, J. Perez-Juste, P. Mulvaney, L.M. Liz-Marzan, Chem. Soc. Rev., Vol. 37 (2008) p.1783.

Google Scholar

[9] Q. Zhang, J. Ge, T. Pham, J. Goebl, Y. Hu, Z. Lu, Angew. Chem. Int. Ed., Vol. 48 (2009), p.3516.

Google Scholar

[10] Z.M. Peng, H. Yang, Nano Today, Vol. 4 (2009), p.143.

Google Scholar

[11] C. L. Fang, K. Qian, J. H. Zhu, S. B. Wang, X. X. Lv, S. H. Yu, Nanotechnology, Vol. 19 (2008), p.125601.

Google Scholar

[12] R. Song, H. H. Song, J. S. Zhou, X. H. Chen, B. Wu and H. Y. Yang, J. Mater. Chem., Vol. 22 (2012), p.12369.

Google Scholar

[13] H. Q. Li and H. S. Zhou, Chem. Commun., Vol. 48 (2012), p.1201.

Google Scholar

[14] X. W. Lou, C. M. Li, and L. A. Archer, Adv. Mater., Vol. 21 (2009), p.2536.

Google Scholar

[15] J. Kim and A. Manthiram, Nature, Vol. 390 (1997), p.265.

Google Scholar

[16] Y. C. Qiu, G. L. Xu, K. Y. Yan, H. Sun, J. W. Xiao, S. H. Yang, S. G. Sun, L. M. Jin and H. Deng, J. Mater. Chem., Vol. 21 (2011), p.6346.

Google Scholar

[17] H. Zhang, G. P. Cao, Z. Y. Wang, Y. S. Yang. Z. J. Shi and Z. N. Gu, Nano Lett., Vol. 8(2008), p.2664.

Google Scholar

[18] J. Zhao, Z. Tao, J. Liang and J. Chen, Cryst. Growth Des., Vol. 8 (2008), p.2799.

Google Scholar

[19] B. Li, G. Rong, Y. Xie, L. Huang and C. Feng, Inorg. Chem., Vol. 45 (2006), p.6404.

Google Scholar

[20] Z. S. Wu, W. C. Ren, L. Wen, L. B. Gao, J. P. Zhao, Z. P. Chen, G. M. Zhou, F. Li and H. M. Cheng, Acs Nano, Vol. 4 (2010), p.3187.

Google Scholar

[21] X. L. Yang, K. C. Fan, Y. H. Zhu, J. H. Shen, X. Jiang, P. Zhao, S. R. Luan and C. Z. Li, ACS Appl. Mater. Interfaces, Vol. 5 (2013), p.997.

Google Scholar

[22] B., J. Li, H. Q. Cao, J. Shao, G. Q. Li, M. Z. Qu and G. Yin, Inorg. Chem., Vol. 50 (2011), p.1628.

Google Scholar

[23] J. P. Liu, Y. Y. Li, X. T. Huang, R. M. Ding, Y. Y. Hu, J. Jiang and L. Liao, J. Mater. Chem., Vol. 19 (2009), p.1859.

Google Scholar

[24] Y. -D. Ko, J. -G. Kang, J. -G. Park, S. J. Lee and D. -W. Kim, Nanotechnology, Vol. 20 (2009), p.455701.

Google Scholar