Surface-Enhanced Raman Scattering Determination of Trace Phenanthroline Using Aggregated-Nanosilver as Substrate

Article Preview

Abstract:

Using PEG10000 and sodium citrate as stabilizer, sodium borohydride as reducing agent, a stable nanosilver sol had been prepared. In pH 6.0 Na2HPO4 - NaH2PO4 buffer solution and in the presence of NaCl, a stable nanosilver aggregates were formed. Phenanthroline (Phen) adsorbed on the aggregated-nanosilver surfaces resulting in a surface-enhanced Raman scattering (SERS) peak at 1450 cm-1 observed, and the SERS intensity was enhanced with the concentration of Phen was between 1.25×10-10 mol/L and 2.5×10-9 mol/L. Based on these, a new sensitive SERS method has been proposed for the determination of trace Phen in the synthesis of samples, with satisfactory results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-18

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Xie, P.H. Qiu and C.B. Mao: J. Mat. Chem., Vol. 21 (2011), p.5190.

Google Scholar

[2] R. Liu, J.F. Liu, X.X. Zhou, M.T. Sun and G.B. Jiang: Anal. Chem. Vol. 83 (2011), p.9131.

Google Scholar

[3] D. Cialla, A. März, R. Böhme and F. Theil: Anal. Bioanal. Chem. Vol. 403 (2011), p.27.

Google Scholar

[4] Z.X. Luo and Y. Fang: Spectrosco. Spectra. Anal. Vol. 26 (2006), p.358.

Google Scholar

[5] D.L. Jeanmaire, R.P. Van Duyne and A.P. Sloan: J. Electroanal. Chem. Int. Electrochem. Vol. 84 (1977), p.1.

Google Scholar

[6] T. Vo-Dinh: Tr. Anal. Chem. Vol. 17 (1998), p.557.

Google Scholar

[7] P.R. Stoddart and D.J. White: Anal. Bioanal. Chem. Vol. 394 (2009), p.1761.

Google Scholar

[8] R.J. Dijkstra, F. Ariese, C. Gooijer and U.A. Th. Brinkman: Tr. Anal. Chem. Vol. 24 (2005), p.304.

Google Scholar

[9] J. Vongsvivut, E.G. Robertson and D. McNaughton: J. Raman Spectrosc. Vol. 41 (2010), p.1137.

Google Scholar

[10] Z. Zhou, G.G. Huang, T. Katoc and Y. Ozaki: J. Raman Spectrosc. Vol. 43(2011), p.202.

Google Scholar

[11] E.J. Bell and J. Spence:. Analyst Vol. 126 (2001), p.1.

Google Scholar

[12] E.J. Bell and M.S. Sirimuthu: Analyst Vol. 129 (2004), p.1032.

Google Scholar

[13] O. Peron, E. Rinnert, T. Toury, M.L. Chapelle and C. Compere: Analyst Vol. 136 (2011), p.1018.

Google Scholar

[14] I.A. Larmour, K. Faulds and D. Graham: J. Raman Spectrosc. Vol. 42 (2012), p.1713.

Google Scholar

[15] M.L. Zhang, X. Fan, H.W. Zhou, M.W. Shao, J.A. Zapien, N.B. Wong and S.T. Lee: J. Phy. Chem. C Vol. 114 (2010), p. (1969).

Google Scholar

[16] A. Pal and T. Pal: J. Raman Spectrosc. Vol. 30 (1999), p.199.

Google Scholar

[17] G.Q. Wen, L.P. Zhou, TS Li, A.H. Liang and Z.L. Jiang: Chin. J. Chem. Vol. 30 (2011), p.869.

Google Scholar

[18] Y.H. Luo, K. Li, G.Q. Wen, Q.Y. Liu, A.H. Liang and Z.L. Jiang: Plasmonics Vol. 7 (2013), p.307.

Google Scholar