Research on the Synthesis and Application of Graphene Composite Nanomaterials

Article Preview

Abstract:

During the last half decade, chemically modified graphene has been studied in the context of many applications, such as polymer composites, energy-related materials, sensors, and so on. Herein, we provide a recent development of the synthesis of graphene composite nanomaterials and their application. This paper will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-6

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, Vol. 306 (2004), p.666.

DOI: 10.1126/science.1102896

Google Scholar

[2] A. K. Geim and K. S. Novoselov, Nat. Mater., Vol. 6 (2007), p.183.

Google Scholar

[3] M. J. Allen, V. C. Tung and R. B. Kaner, Chem. Rev., Vol. 110 (2010), p.132.

Google Scholar

[4] Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu and G. Q. Shi, ACS Nano, Vol. 4 (2010), p. (1963).

Google Scholar

[5] W. J. Hong, Y. X. Xu, G. W. Lu, C. Li and G. Q. Shi, Electrochem. Commun., Vol. 10 (2008), p.1555.

Google Scholar

[6] Y. H. Ng, A. Iwase, A. Kudo and R. Amal, J. Phys. Chem. Lett., Vol. 1 (2010), p.2607.

Google Scholar

[7] D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chem. Soc. Rev., Vol. 39 (2010), p.228.

Google Scholar

[8] W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., Vol. 80 (1958), p.1339.

Google Scholar

[9] C. Bao, L. Song, W. Y. Xing, B. H. Yuan, C. A. Wilkie, J. L. Huang, Y. Q. Guo and Y. Hu, J. Mater. Chem., Vol. 22 (2012), p.6088.

Google Scholar

[10] I. S. Hwang, J. C. Kim, S. D. Seo, S. J. Lee, J. H. Lee and D. W. Kim, Chem. Commun., Vol. 48 (2012), p.7061.

Google Scholar

[11] R. Song, H. H. Song, J. S. Zhou, X. H. Chen, B. Wu and H. Y. Yang, J. Mater. Chem., Vol. 22 (2012), p.12369.

Google Scholar

[12] H. Q. Li and H. S. Zhou, Chem. Commun., Vol. 48 (2012), p.1201.

Google Scholar

[13] X. W. Lou, C. M. Li, and L. A. Archer, Adv. Mater., Vol. 21 (2009), p.2536.

Google Scholar

[14] J. F. Liang, W. Wei, D. Zhong, Q. L. Yang, L. D. Li and L. Guo, ACS Appl. Mater. Interfaces, Vol. 4 ( 2012), p.454.

Google Scholar

[15] Y. M. Li, X. J. Lv, J. Lu and J. H. Li, J. Phys. Chem. C, Vol. 114 (2010), p.21770.

Google Scholar

[16] S. M. Paek, E. Yoo and I. Honma, Nano Lett., Vol. 9 (2009), p.72.

Google Scholar

[17] X. Zhou, L. J. Wan and Y. G. Guo, Adv. Mater., Vol. 25 (2013), p.2152.

Google Scholar

[18] Z. S. Wu, W. C. Ren, L. Wen, L. B. Gao, J. P. Zhao, Z. P. Chen, G. M. Zhou, F. Li and H. M. Cheng, Acs Nano, Vol. 4 (2010), p.3187.

Google Scholar

[19] X. L. Yang, K. C. Fan, Y. H. Zhu, J. H. Shen, X. Jiang, P. Zhao, S. R. Luan and C. Z. Li, ACS Appl. Mater. Interfaces, Vol. 5 (2013), p.997.

Google Scholar

[20] B., J. Li, H. Q. Cao, J. Shao, G. Q. Li, M. Z. Qu and G. Yin, Inorg. Chem., Vol. 50 (2011), p.1628.

Google Scholar

[21] J. L. Yang, J. J. Wang, Y. J. Tang, D. N. Wang, X. .F. Li, Y. H. Hu, R. Y. Li, G. X. Liang, T. K. Sham and X. L. Sun, Energy Environ. Sci., Vol. 6 (2013), p.1521.

Google Scholar

[22] Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, Z. Long and P. Zhang, Electrochem. Commun., Vol. 12 (2010), p.10.

Google Scholar

[23] F. Y. Su, C. H. You, Y. B. He, W. Lv, W. Cui, F. M. Jin, B. H. Li, Q. H. Yang and F. Y. Kang, J. Mater. Chem., Vol. 20 (2010), p.9644.

Google Scholar