Synthesis and Application of Porous Nanomaterials

Article Preview

Abstract:

Hierarchically porous materials have attracted recent attention because of the development of new routes to form them and because they are associated with improved efficiencies when used as catalysts or as electrode materials in secondary batteries. Hierarchical porosity enables high surface areas and, hence, high solid fluid exchange associated with small pores to be combined with the high flow rates associated with large pores.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-10

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Corma, Chem. Rev., Vol. 97 (1997), p.2373.

Google Scholar

[2] M. E. Davis, Nature, Vol. 417 (2002), p.813.

Google Scholar

[3] A. Stein, Adv. Mater., Vol. 15 (2003), p.763.

Google Scholar

[4] X. S. Zhao, J. Mater. Chem., Vol. 16 (2006), p.623.

Google Scholar

[5] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, Vol. 359 (1992), p.710.

Google Scholar

[6] G. J. A. A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev., Vol. 102 (2002), p.4093.

Google Scholar

[7] M. A. Carreon, V. V. Guliants, Eur. J. Inorg. Chem., Vol. 1 (2005), p.27.

Google Scholar

[8] F. Fajula, A. Galarneau, F. D. Renzo, Micropor. Mesopor. Mater., Vol. 82 (2005), p.227.

Google Scholar

[9] M. L. K. Hoa, M. Lu, Y. Zhang, Adv. Colloid Interface Sci., Vol. 121 (2006), p.9.

Google Scholar

[10] T. Sen, G. J. T. Tiddy, J. L. Casci, M. W. Anderson, Chem. Mater., Vol. 16 (2004), p. (2044).

Google Scholar

[11] C. G. Oh, Y. Baek, S. K. Ihm, Adv. Mater., Vol. 17 (2005), p.270.

Google Scholar

[12] P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides, G. D. Stucky, Science, Vol. 282 (1998), p.2244.

DOI: 10.1126/science.282.5397.2244

Google Scholar

[13] H. Maekawa, J. Esquena, S. Bishop, C. Solans, B. F. Chmelka, Adv. Mater., Vol. 15 (2003), p.591.

DOI: 10.1002/adma.200304248

Google Scholar

[14] D. Grosso, G. J. A. A. Soler-Illia, E. L. Crepaldi, B. Charleux, C. Sanchez, Adv. Funct. Mater., Vol. 13 (2003), p.37.

DOI: 10.1002/adfm.200390002

Google Scholar

[15] W. Jing, W. Wang, S. Wu, W. Jin, W. Xing, J. Colloid Interface Sci., Vol. 333 (2009), p.324.

Google Scholar

[16] Y. Fu, Z. Jin, W. Xue, Z. Ge, J. Am. Ceram. Soc., Vol. 91 (2008), p.2676.

Google Scholar

[17] S.W. Bian, Y. L. Zhang, H. L. Li, Y. Yu, Y. L. Song, W. G. Song, Micropor. Mesopor. Mater., Vol. 131 (2010), p.289.

Google Scholar

[18] Y. F. Shi, B. K. Guo, S. A. Corr, Q. H. Shi, Y. S. Hu, K. R. Heier, L. Q. Chen, R. Seshadri and G. D. Stuky, Naono Lett. Vol. 9 (2009), p.4215.

Google Scholar

[19] S. Y. Feng, C. X. Hua, B. Li, X. P. Fang, C. H. Yao, Y. C. Zhang, Y. S. Hu, Z. X. Wang, L. Q. Chen, D. Y. Zhao and G. D. Stucky, Adv. Funct. Mater., Vol. 23 (2013). P. 1823.

Google Scholar

[20] E. S. Toberer, T. D. Schladt and R. Seshadri, J. Am. Chem. Soc., Vol. 128 (2006), p.1462.

Google Scholar

[21] M. Rajamathi, S. Thimmaiah, P. Morgan, R. Seshadri, J. Mater. Chem., Vol. 11 (2001), p.2489.

Google Scholar

[22] E. S. Toberer, A. Joshi, R. Seshadri, Chem. Mater., Vol. 17 (2005), p.2142.

Google Scholar

[23] E. S. Toberer, R. Seshadri, Adv. Mater., Vol. 17 (2005), p.2244.

Google Scholar

[24] H. Zhou, J. J. Guo, P. Li, T. X. Fan, D. Zhang and J. H. Ye, Scientific report, Vol. 3(2013), p.1.

Google Scholar

[25] Q. Yang, Z. Y. Lu, Z. Chang, W. Zhu, J. Q. Sun, J. F. Liu, X. M. Sun and X. Duan, RSC Advances, Vol. 2 (2012), p.1663.

Google Scholar

[26] S. H. Hakim and B. H. Shanks, Chem. Mater., Vol. 21 (2009), p. (2027).

Google Scholar

[27] H. F. Yang and D. Y. Zhao, J. Mater. Chem., Vol. 15 (2005), p.1217.

Google Scholar

[28] B. Zhang, X. C. Ye, W. Y. Hou, Y. Zhao and Y. Xie, J. Phys. Chem. B, Vol. 110 ( 2006), p.8978.

Google Scholar