Fabrication of Polymer Solar Cells on Flexible Substrate

Article Preview

Abstract:

Polymer blends are potential candidates for solar-energy conversion, due to their flexibility, ease of processing, and low costs. We report herein 2.6 cm2 active area of flexible polymer solar cells based on blends of polymeric semiconductor [poly (2-methoxy-5-(3,7-dimethyloctyloxy)-(para-phenylene vinylene)] (MDMO-PPV) and the soluble fullerene C60 derivative [6,6 phenyl C61-butyric acid methyl este (PCBM). Devices were prepared by etching an electrode pattern of Indium Tin Oxide (ITO) covered on poly [ethylene terephthalat (PET) substrate. A layer of conducting poly (3,4-ethylenedioxythiophene):poly (styrene sulphonate) (PEDOT:PSS) were screen printed on top of the ITO. Followed by spin coated a polymer blends of MDMO-PPV/PCBM in chlorobenzene onto PEDOT:PSS layer. Finally, evaporation of a silver electrode and PET film lamination completed the devices. The typical overall power efficiency of the prototype devices in an active area of 2.6 cm2 was 0.004 % with open-circuit voltage of 1.473 Volt, short-circuit current of 5.84 x 10-06 Ampere, and maximum power of 2.12 x 10-06 Watt.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-117

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger: Science Vol. 207 (1995), p.1789.

Google Scholar

[2] S.C. Veenstra, W.J.H. Verhees, J.M. Kroon, M.M. Koetse, J. Sweelssen, J.J.A.M. Bastiaansen, H.F.M. Schoo, X. Yang, A. Alexeev, J. Loos, U.S. Schubert, and M.M. Wienk: Chem. Mater., Vol. 16 (2004), p.2503.

DOI: 10.1021/cm049917d

Google Scholar

[3] E. Bundgaard and F.C. Krebs: Sol. Energy Mater. Sol. Cells Vol. 91 (2007), p.954.

Google Scholar

[4] L.M. Chen, Z.H. Hong, G. Li, and Y. Yang: Adv. Mater. Vol. 21 (2009), p.1434.

Google Scholar

[5] T.L. Benanti and D. Venkataraman: Photosynth. Research Vol. 87 (2006), p.73.

Google Scholar

[6] J.K.J. van Duren, X. Young, J. Loos, C.W.T. Bulle-Liewma, A.B. Sieval, J.C. Hummelen, and R.A.J. Janssen: Adv. Funct. Mater. Vol. 14 (2004), p.425.

DOI: 10.1002/adfm.200305049

Google Scholar

[7] M. Al-Ibrahim, H.K. Roth, M. Schoedner, A. Konkin, U. Zhokhavets, G. Gobsch, P. Scharff, and S. Sensfuss: Organic Elec. Vol. 6 (2005), p.65.

DOI: 10.1016/j.orgel.2005.02.004

Google Scholar

[8] L. L Gui, L.G. Hao, Y.X. Niu, and Z.E. Le: Chinesse Sci. Bull. Vol. 5 (2007), p.145.

Google Scholar

[9] C. Lungenschmied, G. Dennler, G. Czeremuzkin, M. Latreche, H. Neugebauer, and N.S. Sariciftci: Proc. of SPIE Vol. 6197 (2006), p.619712.

Google Scholar

[10] C. Honsberg, and S. Bowden, in: Photovoltaics CDROM: Devices, Systems, and Applications, Vol. I, Photovoltaics Centre The University of New South Wales, Australia (1999).

Google Scholar

[11] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, and J.C. Hummelen: App. Phys. Lett. Vol. 78 (2001), p.841.

DOI: 10.1063/1.1345834

Google Scholar

[12] C.J. Brabec: Sol. Energy Mater. Sol. Cells Vol. 83 (2007), p.273.

Google Scholar

[13] M.C. Schaeber, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, and C.J. Brabec: Adv. Mater. Vol. 18 (2006), p.789.

Google Scholar

[14] H. Hoppe, N. Arnold, N.S. Sariciftci, and D. Meissner: Sol. Energy Mater. Sol. Cells Vol. 80 (2003), p.105.

Google Scholar