Quasi-Solid State DSSC Performance Enhancement by Bilayer Mesoporous TiO2 Structure Modification

Article Preview

Abstract:

Quasi-solid state dye-sensitized solar cells (DSSC) having bilayer structure were made by using nanocrystalline anatase-rutile TiO2 to enhance the photovoltaic performance. The bilayer structures were coated to FTO glass using doctor blade technique with total active area of 0.4 cm2. Cyanidin dye extracted from mangosteen pericarp was used as photosensitizer. Bilayer anatase-anatase was formed with surface area of 99.9 m2/g and pore volume of 0.23 cc/g while anatase-rutile structure has surface area of 103.5 m2/g and pore volume of 0.21 cc/g. Overall energy conversion efficiencies under illumination of 10 mW/cm2 of 0.461% and 0.1365% were achieved for DSSC employing anatase-anatase and anatase-rutile TiO2 structure, respectively. Both efficiencies were higher than that of monolayer anatase and rutile TiO2 structure whose efficiencies in the range of 0.02% to 0.037%. The photocurrent action spectra of bilayer structures performed high efficiency spectrum in the wavelength range of 420 480 nm owing to cyanidin effect of dye.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-96

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan and M. Grätzel: Natur, vol. 353 (1991), p.737–740.

Google Scholar

[2] M. Grätzel: Photochemistry and Photobiology C, vol. 4 (2003), p.145 – 153.

Google Scholar

[3] N. J. Cherepy, G. P. Smestad, M. Grätzel, J. Z. Zhang: J. Phys. Chem. B, vol. 101 (1997), pp.9342-9351.

Google Scholar

[4] R. A. Wahyuono and D. D. Risanti: Proceeding International Conference of Chemical and Material Engineering, University of Diponegoro – Semarang, Indonesia, Sept. 12-13, (2012).

Google Scholar

[5] E. Stathatos, Y. Chen, D. D. Dionysiou: Solar Energy and Solar Cell, vol. 92 (2008), p.1358 – 1365.

Google Scholar

[6] Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa: Coordination Chemistry Reviews, Vol. 248, p.1381 – 1389, (2004).

Google Scholar

[7] A. Usami: Chemical Physics Letters, vol. 277 (1997), pp.105-108.

Google Scholar

[8] T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii, S. Ito: Angewandte Chemie International Edition, Vol. 41 Issue 15 (2002), p.2811–2813.

DOI: 10.1002/1521-3773(20020802)41:15<2811::aid-anie2811>3.0.co;2-#

Google Scholar

[9] A. L. Castro, M. R. Nunes, A. P. Carvalho, F. M. Costa, M. H. Florencio: Solid State Sciences, vol. 10 (2008), pp.602-606.

Google Scholar

[10] R. A. Wahyuono, D. D. Risanti, H. Ihara, in: Fabrication of DSSC with TiO2 and ZnO Nanoparticles for high Conversion Efficiency, Master Thesis, Department of Engineering Physics, ITS.

Google Scholar

[11] C. Rawlinson: lecture note School of Pharmacy, Univeristy of Bradford, (2006).

Google Scholar

[12] C. J. Howard: J. Appl. Cryst., vol. 15, p.615 – 620, (1982).

Google Scholar

[13] J. Yu, Q. Li, Z. Shu: Electrochimica Acta, vol. 56 (2011), p.6293 – 6298.

Google Scholar

[14] J. Yu, J. Fan, K. Lv: Nanoscale, vol. 2 (2010), p.2144–2149.

Google Scholar

[15] J. Yu, W. Liu, H. Yu: Crystal Growth & Design, vol. 9 no. 3 (2008), p.930 – 934.

Google Scholar

[16] G. Rothenberger, P. Comte, M. Grätzel: Solar Energy Materials & Solar Cells, vol. 58 (1999), pp.321-336.

DOI: 10.1016/s0927-0248(99)00015-x

Google Scholar