Photocatalytic Degradation of C.I. Reactive Red 2 by Using TiO2-Coated PET Plastic under Solar Irradiation

Article Preview

Abstract:

The synthetic dyes are a refractory and poisonous material. Most of industrial textile today used the synthetic dyes that can be dangerous to the environment because of the colored wastewater produced from their processes. This study concentrates on the application of Advanced Oxidation Processes (AOPs) for synthetic dyes wastewater treatment. Photocatalysis process as one of AOPs was applied for the degradation of organic content of synthetic dyes wastewater. The reactive dye, C.I. Reactive Red 2 (RR 2) was used as the organic pollutant model at the concentration of 100 mg/l. The TiO2 concentration of 0.05-0.4 g/ml was used as the photocatalyst. The bulk and nanosize of TiO2 were coating on the PET plastic and the degradation of organic content was examined in the term of color and COD within 0-12 hrs under solar irradiation. By using 0.4 g/ml of bulk TiO2, the color degradation of 88% and COD removal of 46% was achieved. Furthermore, by using 0.4 g/ml of nanosize TiO2, the enhancement of color degradation and COD removal was observed, that is 98% and 56%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

180-188

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.B. Fang Han, R. Venkata Subba, A.B. Kambala, C. Madapusi Srinivasan, C. Dharmarajan Rajarathnam, and A.B. Ravi Naidu, Tailored titanium dioxide photocatalyst for the degradation of organic dyes in wastewater treatment : a review: Applied Catalysis A. Vol. 359 (2009).

DOI: 10.1016/j.apcata.2009.02.043

Google Scholar

[2] A. Adesina, Industrial Exploitation of Photocatalysis : Progress, Perspectives and Prospects: Catal. Surv. Asia. Vol. 8 (2004), pp.265-273.

DOI: 10.1007/s10563-004-9117-0

Google Scholar

[3] S. Kwon, M. Fan, A. Cooper, and H. Yang, Photocatalytic Applications of Micro- and Nano- TiO2 in Environmental Engineering: Crit. Rev. Env. Sci. Technol. Vol. 38 (2008), pp.197-226.

Google Scholar

[4] S. Malato, J. Blanco, A. Vidal, and C. Richter, Photocatalysis with Solar Energy at a Pilot-plant Scale : An Overview: Appl Catal. B. Vol. 37 (2002), pp.1-15.

DOI: 10.1016/s0926-3373(01)00315-0

Google Scholar

[5] E. Bandala and C. Estrada, Comparison of Solar Collection Geometries for Application to Photocatalytic Degradation of Organic Contaminants: J. Sol. Energy Eng. Vol. 129 (2007), pp.22-26.

DOI: 10.1115/1.2390986

Google Scholar

[6] D. Bahnemann, Photocatalytic Water Treatment : Solar Energy Applications: Sol. Energy. Vol. 77 (2004), pp.445-459.

DOI: 10.1016/j.solener.2004.03.031

Google Scholar

[7] K. Dai, H. Chen, T. Peng, D. Ke, and H. Yi, Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles: Chemosphere. Vol. 69 (2007), pp.1361-1367.

DOI: 10.1016/j.chemosphere.2007.05.021

Google Scholar

[8] Y. Liu, X. Chen, J. Li, and C. Burda, Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts: Chemosphere. Vol. 61 (2005), pp.11-18.

DOI: 10.1016/j.chemosphere.2005.03.069

Google Scholar

[9] R. Pozzo, M. Baltanas, and A. Cassano, Supported Titanium Dioxide as Photocatalyst in Water Decontamination : State-of-Art: Catal. Today. Vol. 39 (1997), pp.219-231.

DOI: 10.1016/s0920-5861(97)00103-x

Google Scholar

[10] J. Määttä, M. Piispanen, H.R. Kymäläinen, A. Uusi-Rauva, K.R. Hurme, S. Areva, A.M. Sjöberg, and L. Hupa, Effects of UV-radiation on the cleanability of titanium dioxide-coated glazed ceramic tiles: Journal of the European Ceramic Society. Vol. 27 (2007).

DOI: 10.1016/j.jeurceramsoc.2007.03.026

Google Scholar

[11] C.H. Ao, S.C. Lee, and J.C. Yu, Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2: Journal of Photochemistry and Photobiology A: Chemistry. Vol. 156 (2003), pp.171-177.

DOI: 10.1016/s1010-6030(03)00009-1

Google Scholar

[12] R. Matthews, Photooxidative Degradation of Coloured Organics in Water Using Supported Catalyst TiO2 on Sand: Water Res. Vol. 25 (1991), pp.1169-1176.

DOI: 10.1016/0043-1354(91)90054-t

Google Scholar

[13] A. Fernandez, G. Lasaletta, V. Jimenez, A. Justo, A. Gonzallez-Ellipe, J. Herrmann, H. Tahiri, and Y. Ait-Ichou, Preparation and Characterization of TiO2 Photocatalysts Supported on Various Rigid Supports (Glass, Quart and Stainless Steel). Comparative Studies of Photocatalytic Activity in Water Purification.: Appl Catal. B. Vol. 7 (1995).

DOI: 10.1002/chin.199614030

Google Scholar

[14] N. Rao and V. Chaturvedi, Photoactivity of TiO2 Coated Pebbles: Ind. Eng. Chem. Vol. 46 (2007), pp.4406-4414.

DOI: 10.1021/ie0702532

Google Scholar

[15] Y. Gao and H. Liu, Preparation and Catalytic Property Study of a Novel Kind of Suspended Photocatalyst of TiO2-activated Carbon Immobilized on Silicone Rubber Film: Mater. Chem. Phys. Vol. 92 (2005), pp.604-608.

DOI: 10.1016/j.matchemphys.2005.02.018

Google Scholar

[16] M. Fabiyi and R. Skelton, Photocatalytic Mineralisation of Methylene Blue Using Buoyant TiO2-coated Polystyrene Beads: J Photochem Photobiol A. Vol. 132 (2000), pp.121-128.

DOI: 10.1016/s1010-6030(99)00250-6

Google Scholar

[17] K. Hashimoto, K. Wasada, M. Osaki, E. Shono, K. Adachi, N. Touki, H. Kominami, and Y. Kera, Photocatalytic Oxidation of Nitrogen Oxide Over Titania Zeolite Composite Catalyst to Remove Nitrogen Oxides in the Atmosphere: Appl Catal. B. Vol. 30 (2001).

DOI: 10.1016/s0926-3373(00)00258-7

Google Scholar

[18] N.R. Neti and P. Joshi, Cellulose reinforced-TiO2 photocatalyst coating on acrylic plastic for degradation of reactive dyes: J. Coat. Technol. Res. Vol. 7 (2010), pp.643-650.

DOI: 10.1007/s11998-010-9244-7

Google Scholar

[19] J. Garcia-Montano, N. Ruiz, I. Munoz, X. Domenech, J.A. Garcia-Hortal, F. Torrades, and J. Peral, Environmental assessment of different photo-Fenton approaches for commercial reactive dye removal: J. Hazard. Mater. A. Vol. 138 (2006), pp.218-225.

DOI: 10.1016/j.jhazmat.2006.05.061

Google Scholar

[20] C.S. Papic, C.D. Vujevi, N. Koprivanac, and D. Sinko, Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes: J. Hazard. Mater. Vol. 164 (2009), pp.1137-1145.

DOI: 10.1016/j.jhazmat.2008.09.008

Google Scholar

[21] H. Kusic, A.L. Bozic, and N. Koprivanac, Fenton type processes for minimization of organic content in coloured wastewaters: Part I: Processes optimization: Dyes and Pigments. Vol. 74 (2007), pp.380-387.

DOI: 10.1016/j.dyepig.2006.02.022

Google Scholar

[22] R.S. Sreedhar and B. Kotaiah, Decolorization of simulated spent reactive dye bath using solar/TiO2/H2O2: Int. J. Environ. Sci. Tech. Vol. 2 (2005), pp.245-251.

DOI: 10.1007/bf03325883

Google Scholar

[23] J.R. Easton, in: The dye maker's view edited by Cooper P, in : Colour in Dyehouse Effluent, The society of Dyers and Coulorists, Alden Press (1995).

Google Scholar

[24] M.S. Lucas, A.A. Dias, A. Sampaio, C. Amaral, and J. Peres, Degradation of a textile reactive azo dye by a combined chemicalebiological process: Fenton's reagent-yeast: Water Res. Vol. 41 (2007), pp.1103-1109.

DOI: 10.1016/j.watres.2006.12.013

Google Scholar

[25] N. Tantak and S. Chaudari, Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment: J. Hazard. Mater. Vol. B136 (2006), pp.698-705.

DOI: 10.1016/j.jhazmat.2005.12.049

Google Scholar

[26] C. O'Neill, F.R. Hawkes, D. Hawkes, N.D. Lourenco, H.M. Pinheiro, and W. Delee, Review colour in textile effluents e sources, measurement, discharge consents and simulation: a review: J. Chem. Technol. Biotech. Vol. 74 (1999), pp.1009-1018.

DOI: 10.1002/(sici)1097-4660(199911)74:11<1009::aid-jctb153>3.0.co;2-n

Google Scholar

[27] J.C. Garcia, J.I. Simionato, A.E. Carli da silva, J. Nozaki, and N. Evalzio de Souza, Solar Photocatalytic degradation of real textile effluents by associated titanium dioxide and hydrogen peroxide Indian Journal of solar energy Vol. 83 (2009).

DOI: 10.1016/j.solener.2008.08.004

Google Scholar

[28] A. Khataee and G.A. Mansoori, in: Nanostructured titanium dioxide materials : Properties, Preparation and Application World Scientitif Publishing Co. Pte. Ltd, Singapore (2012).

Google Scholar

[29] J. Jeni and S. Kanmani, Solar Nanophotocatalytic Decolorisation of Reactive Dyes Using Titanium Dioxide: Iran. J. Environ. Health. Sci. Eng. Vol. 8 (2011), pp.15-24.

Google Scholar

[30] M. Liqun, L. Qinglin, D. Hongxin, and Z. Zhijun, Synthesis of nanocrystalline TiO2 with high photoactivity and large specific surface area by sol-gel method Materials Research Bulletin. Vol. 40 (2005), pp.201-208.

DOI: 10.1016/j.materresbull.2004.11.001

Google Scholar

[31] B. Neppolian, S.R. Kanel, H.C. Choi, M.V. Shankar, and V. Bsnunathi Arabindoo Murugesan, Photocatalytic degradation of reactive yellow 17 dye in aqueous solution in the presence of TiO2 with cement binder. : Int. J. Photoenergy. Vol. 5 (2003).

DOI: 10.1155/s1110662x03000126

Google Scholar