Springback Prediction Compensation and Optimization for Front Side Member in Sheet Metal Forming Using FEM Simulation

Article Preview

Abstract:

Numerical simulation by finite element method has become a powerful tool in predicting and preventing the unwanted effects of sheet metals technological processing. One of the most important problems in sheet metal forming is the compensation of springback. To improve the accuracy of the formed parts, the die surfaces are required to be optimized so that after springback the geometry falls at the expected shape. This paper presents and discusses numerical simulation procedure of die compensation by using the methods of Simplified Displacement Adjustment (SDA). This analysis use Benchmark 3 models of Numisheet 2011. Sensitively analysis was done by using finite element method (FEM) show that the springback values are influenced by element size, integration points and material properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

436-442

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Schuler GmbH, Metal forming handbook, Springer, (1998).

Google Scholar

[2] K. Li, W. D. Carden, and R. H. Wagoner, Simulation Of Springback, International Journal of Mechanical Sciences, Vol. 44, pp.103-122, (2002).

DOI: 10.1016/s0020-7403(01)00083-2

Google Scholar

[3] W. D. Carden, L.M. Geng, D. K. Matlock, and R. H. Wagoner, Measurement of springback, International Journal of Mechanical Sciences, Vol. 44, pp.79-101, (2002).

DOI: 10.1016/s0020-7403(01)00082-0

Google Scholar

[4] M. H. A. Bonte, A. H. van den Boogaard and E. Veldman, Modelling, screening, and solving of optimisation problems: Application to industrial metal forming processes, ESAFORM Conference on Material Forming, pp.1695-1705, (2004).

DOI: 10.1063/1.2729479

Google Scholar

[5] H. I. Demirci, C. Esner, and M. Yasar, Effect of the blank holder force on drawing of aluminum alloy square cup: Theoretical and experimental investigation, Journal of Materials Processing Technology, p.152 – 160, (2008).

DOI: 10.1016/j.jmatprotec.2007.12.010

Google Scholar

[6] M. Sunseri, J. Cao, A. P. Karafillis and M. C. Boyce, Accommodation of Springback Error in Channel Forming Using Active Binder Force Control: Numerical Simulations and Experiments, Journal of Engineering Materials and Technology, pp.426-435, (1996).

DOI: 10.1115/1.2806830

Google Scholar

[7] G. Liu, Z. Lin, W. Xu, and Y. Bao, Variable Blankholder Force in U-shaped Part Forming for Eliminating Springback Error, Journal of Materials Processing Technology, pp.259-264, (2002).

DOI: 10.1016/s0924-0136(01)01110-4

Google Scholar

[8] W. L. Xu, C. H. Ma and W. J. Feng, Sensitive factors in springback simulation for sheet metal forming, Journal of Materials Processing Technology, pp.217-222, (2004).

DOI: 10.1016/j.jmatprotec.2004.04.044

Google Scholar

[9] H. S. Cheng, J. Cao, and Z. C. Xia, An accelerated springback compensation method, International Journal of Mechanical Sciences, p.267 – 279, (2007).

DOI: 10.1016/j.ijmecsci.2006.09.008

Google Scholar

[10] W. Gan and R. H. Wagoner, Die design method for sheet springback, International Journal of Mechanical Sciences, p.1097 – 1113, (2004).

DOI: 10.1016/j.ijmecsci.2004.06.006

Google Scholar

[11] A. P. Karafillis and M. C. Boyce, Tooling design accommodating springback errors, Journal of Material Process Technology, pp.499-508, (1992).

DOI: 10.1016/0924-0136(92)90206-8

Google Scholar

[12] Dorel Banabic, Sheet metal forming processes constitutive modelling and numerical simulation, Springer, (2010).

Google Scholar