Oxidation Characteristics of Various Nickel Composite Coated on Ferritic Stainless Steel

Article Preview

Abstract:

The present works concerns in developing alternative interconnect material for solid oxide fuel cell (SOFC) application. For this purpose, ferritic stainless steel is used as the substrate material while various nickel composite layers were coated on the substrate in order to improve its oxidation resistance at SOFC application temperature. Nickel layers were deposited on ferritic stainless steel by high velocity oxy-fuel (HVOF) method. In order to create nickel-oxide layer, the coated samples is then heated at temperature of 950°C for 1 hour, wherease sol-gel coating was performed on the coated samples in order to create nickel manganese oxide spinnel composite layers. All samples were then oxidized at temperature 800°C for 8 hours, in order to evaluate their oxidation characteristics at SOFC service temperature. Before and after oxidation, x-ray diffraction (XRD) and scanning electron microscope (SEM) were performed to all samples. It was observed that coated samples effectively inhibit the formation of chromium oxide that normally occurs on stainless steel surface at SOFC service temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

455-459

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Zhang, S.H. Chan, G. Li, H.K. Ho, Jun Li, Z. Feng: J. Power Sourc. Vol. 195(3) (2010), p.685.

Google Scholar

[2] W.Z. Zhu, S.C. Deevi: Mater. Sci. and Eng.: A, Vol. 348(1-2) (2003), p.227.

Google Scholar

[3] J.W. Fergus: Mater. Sci. and Eng.: A, Vol. 397 (1-2) (2005), p.271.

Google Scholar

[4] J. Wu, X. Liu: J. Mater. Sci & Tech. Vol. 26(4)(2010), p.293.

Google Scholar

[5] Z Zeng, K Natesan: Solid State Ionics. Vol. 167(1-2) (2004), p.9.

Google Scholar

[6] Z. Yang, M. S. Walker, P. Singh, and J.W. Stevenson: Electrochem. Solid-State Lett. Vol. 6(10) (2003) B35-B37.

Google Scholar

[7] Z. Yang, M. S. Walker, P. Singh, J. W. Stevenson, and T. Norby: J. Electrochem. Soc. Vo. 151(12) (2004), p. B669-B678.

Google Scholar

[8] J. E. Hammer, S. J. Laney, R. W. Jackson, K. Coyne, F. S. Pettit, and G. H. Meier: Oxidation of Metals, Vol. 67(1-2) (2007).

Google Scholar

[9] N. Shaigan, W. Qu, D. G. Ivey, W. Chen: J. of Power Sour. Vol. 195(6)(2010), p.1529.

Google Scholar

[10] K. A. Nielsen,  A. R. Dinesen,  L. Korcakova, L. Mikkelsen,  P. V. Hendriksen,  F. W. Poulsen: Fuel Cells, Vol. 6(2)(2006, p.100.

DOI: 10.1002/fuce.200500114

Google Scholar

[11] S. Geng, Y. Li, Z. Ma, L. Wang, L. Li, F. Wang: J. of Power Sourc. Vol. 195(10)(2010), p.3256.

Google Scholar

[12] W. Zhang, J. Pu, B. Chi, L. Jian: J. of Power Sourc. Vol. 196(13)(2011), p.5591.

Google Scholar

[13] B. Hua, W. Zhang, J. Wu, J. Pu, B. Chi, L. Jian: J. of Power Sourc. Vol. 195(21)(2010), p.7375.

Google Scholar

[14] W.J. Shong, C.K. Liu, P. Yang: Mater. Chem. and Phys. Vol. 134(2-3(2012), p.670 ).

Google Scholar

[15] C. Fu, K. Sun, X. Chen, N. Zhang, D. Zhou: Corr. Sci. Vol. 50 (7)(2008), p. (1926).

Google Scholar