Preparation of Cuprous Oxide from Industrial Leaching Liquid Using the Microwave Thermo-Ethanol Method

Article Preview

Abstract:

This study investigates the use of the microwave thermo-ethanol method to recover cuprous oxide from waste liquid that contains heavy metals, formed by the leaching of acid from sludge of printed circuit boards. An XRD analysis yields main peaks of cuprous oxide 2θ = 36.45° and 42.35°. SEM analysis indicates that the cuprous oxide was octahedral when 0.1 M glucose, or a higher concentration, was added to the waste liquid. The purity of prepared powder of cuprous oxide was analyzed using an inductively coupled plasma-optical emission spectrometer (ICP-OES), and the purity of the prepared powder of cuprous oxide was found to exceed 70%. Accordingly, in this study, metallic resources were regenerated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

2131-2134

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Georgieva and M. Ristov: Solar Energy Mater. Solar Cells Vol. 73 (2002), pp.67-73.

Google Scholar

[2] P.E. Jongh, D. Vanmaekelbergh and J.J. Kelly: Chemical Communications (1999), pp.1069-1070.

Google Scholar

[3] H. Yang, J. Ouyang, A. Tang, Y. Xiao, X. Li, X. Dong and Y. Yu: Mater. Res. Bull Vol. 41 (2006), pp.1310-1318.

Google Scholar

[4] H. Xu, W. Wang and W. Zhu: J. Phys. Chem. B Vol. 110 (2006) pp.13829-13824.

Google Scholar

[5] J.Y. Chen, P.J. Zhou, J.L. Li and Y. Wang: Carbohydrate polymers Vol. 72 (2008), pp.128-132.

Google Scholar

[6] E. Ko, J. Choi, K. Okamoto, Y. Tak and J. Lee: Chem. Phys. Vol. 7 (2006), pp.1505-1509.

Google Scholar

[7] F. Sun, Y. Guo, W. Song, J. Zhao, L. Tang and Z. Wang: J. Cryst. Growth Vol. 304 (2007), pp.425-429.

Google Scholar

[8] L. Gou and C.J. Murphy: Nano Letters Vol. 3 (2003), pp.231-234.

Google Scholar

[9] S. Xu, X. Song, C. Fan, G. Chen, W. Zhao, T. You and S. Sun: J. Cryst. Growth Vol. 305 (2007), pp.3-7.

Google Scholar

[10] M. Wei, N. Lun, X. Ma and S. Wen: Mater. Lett. Vol. 61 (2007), pp.2147-2150.

Google Scholar

[11] X. Liu, R. Hu, S. Xiong, Y. Liu, L. Chai, K. Bao and Y. Qian: Mater. Chem. Phys. Vol. 114 (2009), pp.213-216.

Google Scholar

[12] H.G. Zhang, Q. Zhu, Y. Wang, C.Y. Zhang and L. Tao: Mater. Lett. Vol. 61 (2007), pp.4508-4511.

Google Scholar

[13] X. Zhang, G. Wang, A. Gu, H. Wu and B. Fang: Solid. State. Commun. Vol. 148 (2008), pp.525-528.

Google Scholar

[14] Y. Dong, Y. Li, C. Wang, A. Cui and Z. Deng: J. Colloid. Interface. Sci. Vol. 243 (2001), pp.85-89.

Google Scholar

[15] X. Zhang, Y. Xie, F. Xu, X. Liu and D. Xu: Inorg. Chem. Commun. Vol. 6 (2003), pp.1390-1392.

Google Scholar

[16] H. Zhang, X. Ren and Z. Cui: J. Cryst. Growth Vol. 304 (2007), pp.206-210.

Google Scholar

[17] Z. Wu, M. Zhang and Y. Ni: J. Cryst. Growth Vol. 260 (2004), pp.490-493.

Google Scholar

[18] P. He, X. Shen and H. Gao: J. Colloid Interface Sci. Vol. 284 (2005).

Google Scholar