Large-Scale Synthesis of ZnO Nanorods by Different Surfactant-Assisted and Low-Temperature Process

Article Preview

Abstract:

In this work, ZnO nanorods have been successfully synthesized by employing ZnCl2, NaOH as the starting materials by using different surfactants (including CTAB, SDS and SDBS), without using template supporting and structure-directing solvent at a low temperature ( 60 up to 90 °C ). X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) were used to analyze the crystal structure and surface morphology. XRD pattern analysis showed that the ZnO clusters are single hexagonal phase of wurtzite structure with no impurity of others. Also, TEM images revealed that the size of a single ZnO nanorod is between 20 nm and 40 nm in diameter and between 200 nm and 2 μm in length. The structures, growth mechanism and the PL spectra properties of ZnO microcrystals are investigated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

2283-2286

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. L. Wang: J. Phys.: Condens. Matter Vol. 16 (2004), p. R829.

Google Scholar

[2] S. Mahmud, M.J. Abdullah, J. Chong, A. K Mohamad and M.Z. Zakaria: J. Cryst. Growth Vol. 287 (2006) , p.118.

Google Scholar

[3] U. Manzoor and D.K. Kim: Scripta. Mater. Vol. 54 (2006) , p.807.

Google Scholar

[4] M. Sima, I. Enculescu and E. Vasile: J. Optoelectron Adv. Mater. Vol. 8(2006) , p.825.

Google Scholar

[5] R.S. Yang and Z.L. Wang: Philosophical Magazine Vol. 87(2007) , p. (2097).

Google Scholar

[6] X. D Wang, Y. Ding, C.J. Summers and Z.L. Wang: J. Phys. Chem. B Vol. 108(2004) , p.8773.

Google Scholar

[7] R.C. Wang, C.P. Liu, J.L. Huang and S.J. Chen: Nanotechnology Vol. 17 (2006) , p.753.

Google Scholar

[8] S. Choopun, N. Hongsith, P. Mangkorntong and N. Mangkorntong: Physica. E Vol. 39 (2007) , p.53.

DOI: 10.1016/j.physe.2006.12.053

Google Scholar

[9] X.M. Sun, X. Chen, Z.X. Deng and Y.D. Li: Mater. Chem. Phys. A Vol. 78 (2002) , p.99.

Google Scholar

[10] C.H. Hung and W.T. Whang: Mater. Chem. Phys. Vol. 82 (2003) , p.705.

Google Scholar

[11] G.J. Xing, G.H. Chen, X.M. Song, X.M. Yuan, W. Yao and H. Yan: Microelectron. Eng. Vol. 66 (2003) , p.70.

Google Scholar

[12] A. Umar, S.H. Kim, Y.H. Im and Y.B. Hahn: Superlatt. Microstruct. Vol. 39 (2006) , p.238.

Google Scholar

[13] J.P. Liu, X.T. Huang, Y.Y. Li, J.X. Duan and H.H. Ai: Mater. Chem. Phys. Vol. 98 (2006) , p.523.

Google Scholar

[14] B. Pradhan, S.K. Batabyal and A.J. Pal: Sol. Energy Mater. Sol. Cells Vol. 91 (2007) , p.769.

Google Scholar