Three-Dimensional Zinc Oxide Nanorod Networks

Article Preview

Abstract:

Three-dimensional (3D) ZnO nanorod networks were synthesized through the direct evaporation of metal zinc with high purity via a chymical evaporation deposition (CVD) method in Ar and O2 at 910 °C without any catalyst. The nanorod networks of as-synthesized ZnO were characterized using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). The branches within one network show very regular orientation relationships: either perpendicular or parallel to each other. The nanorods follow a growth direction [0001]. Photoluminescence (PL) spectroscopy were measured at room temperature and showed the different PL features of other nanostructures. Two typical emission peaks at -401 nm and at 452-495 nm were observed. Specially, the emission peak at 452-495 nm includes four subordinate peaks.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

457-460

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Dai, Y. Zhang, Q. K. Li and C. W. Nan: Chem. Phys. Lett. Vol. 358(2002), p.83.

Google Scholar

[2] Z. L. Wang: J. Mater. Chem. Vol. 15 (2005), p.1021.

Google Scholar

[3] Z. W. Pan, Z. R. Dai and Z. L. Wang: Science Vol. 291 (2001), p. (1947).

Google Scholar

[4] H. F. Li, Y. H. Huang, Y. Zhang, J. J. Qi, X. Q. Yan, Q. Zhang and J, Wang: Cryst. Growth & Des. Vol. 9 (2009), p.1863.

Google Scholar

[5] J. Zhu, H. L. Peng, C. K. Chan, K. Jarausch, X. F. Zhang and Y. Cui: Nano Lett. Vol. 7 (2007), p.1095.

Google Scholar

[6] A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding and Z. L. Wang: Appl. Phys. Lett. Vol. 88 (2006), p.203101.

DOI: 10.1063/1.2203932

Google Scholar

[7] J. H. He, C. H. Ho, C. W. Wang, Y. Ding, L. J. Chen and Z. L. Wang: Cryst. Growth & Des. Vol. 9 (2009), p.17.

Google Scholar

[8] Y. Dai, Y. Zhang and Z. L. Wang: Chem. Phys. Lett. Vol. 375 (2003), p.96.

Google Scholar

[9] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade: Appl . Phys. Vol. 79 (1996), p.7983.

Google Scholar

[10] Y. H. Huang, J. He, Y. Zhang, Y. Dai, Y. S. Gu, S. Wang and C. Zhou: J. Mate. Sci. Vol. 41(2006), p.3057.

Google Scholar

[11] X. Wang, Y. Ding, C. J. Summers and Z. L. Wang: J. Phys. Chem., B Vol. 108 (2004), p.8773.

Google Scholar