A New Way to Manufacture a Carbon Nanotubes Supercapacitor

Article Preview

Abstract:

A nanocomposite electrode of vertically aligned multi-walled carbon nanotubes (MWCNTs) on gold was fabricated to improve the specific capacitance and power density of the conventional supercapacitor. The novel supercapacitor built from MWCNTs and gold electrode showed a very high specific capacitance of 92.74 F/g using cyclic voltammetry (CV) at 10 mV/s, and 96.43 F/g was measured at 100 Hz. This nanocomposite electrode greatly enhanced the utilization efficiency of supercapacitor electrode material, low material cost and provided both high capacitance and power density. It was shown that the nanocomposite electrode based on vertically aligned carbon nanotube electrode had the characteristics of high specific capacitance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

47-50

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. E. Itkis, A. Yu and R. C. Haddon: Nano Lett. 8 (2008), pp.2224-2228.

Google Scholar

[2] M. C. LeMieux, M. Roberts, S. Barman, Y. W. Jin, J. M. Kim and Z. Bao: Science 321 (2008), pp.101-104.

Google Scholar

[3] H. D. Abruña, Y. Kiya and J. C. Henderson: Physics Today Vol. 61 (2008), pp.43-47.

Google Scholar

[4] M. Winter, and R. J. Brodd: Chem. Rev. Vol. 104 (2004), pp.4245-4269.

Google Scholar

[5] K. T. Chau, Y. S. Wong and C. C. Chan: Energy Conversion and Management Vol. 40, Issue 10, (1999), pp.1021-1039.

Google Scholar

[6] M. Jayalakshmi and K. Balasubramanian: Int. J. Electrochem. Sci. 3 (2008) pp.1196-1217.

Google Scholar

[7] C. Liu, A. J. Bard, F. Wudl, I. Weitz and J. R. Heath: Electrochem Solid-State Lett. 2 (1999), pp.577-578.

Google Scholar

[8] E. Frackowiak, K. Jurewicz, S. Delpeux and F. Beguin: J. Power Sources 97 (8) (2001), pp.822-825.

DOI: 10.1016/s0378-7753(01)00736-4

Google Scholar

[9] C. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent: Appl. Phys. Lett. 70 (11) (1997), pp.1480-1482.

DOI: 10.1063/1.118568

Google Scholar

[10] G. L. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin: Nature Vol. 393 (1998), pp.346-349.

Google Scholar

[11] J. H. Chen, W. Z. Li, D. Z. Wang, S. X. Yang, J. G. Wen and Z. F. Ren: Carbon 40 (2002), pp.1193-1197.

Google Scholar

[12] B. J. Yoon, S. H. Jeong, K. H. Lee, H. S. Kim, C. G. Park and J. H. Han: Chem. Phys. Lett. Vol. 388 (2004), pp.170-174.

Google Scholar

[13] Q. Jiang, Y. Zhao, X. Y. Lu, X. T. Zhu, G. Q. Yang, L. J. Song, Y. D. Cai, X. M. Ren and L. Qian: Chem. Phys. Lett. Vol. 410 (2005), pp.307-311.

Google Scholar

[14] C. Du, J. Yeh and N. Pan: Nanotechnology 16 (2005), pp.350-353.

Google Scholar

[15] Y. J. Kim, Y. A. Kim, T. Chino, H. Suezaki, M. Endo and M. S. Dresselhaus: Small Vol. 2 (2006), pp.339-345.

Google Scholar

[16] J. H. Huang, Y. S. Chen, C. C. Chuang, Y. M. Wang and W. P. Kang: J. Vac. Sci. Technol. B. 23 (2005), pp.805-808.

Google Scholar