High Temperature Oxidation Behaviors of Ni-Cr Based Thermal Sprayed Coatings

Article Preview

Abstract:

Ni-Cr coating and Ni-Cr/ZrO2 gradated coating were deposited on C45 carbon steel by high velocity arc spraying and micro-plasma spraying to solve the high temperature oxidation problem of medium carbon steel components. The oxidations of Ni-Cr coating, Ni-Cr/ZrO2 gradated coating and C45 carbon steel substrate were carried out for up to 108 hours in air atmosphere at 1100°C. The oxidation behaviors were investigated after detailed examinations by thermal gravimetric analysis (TGA), x-ray diffraction (XRD) and scanning electron microscopy (SEM). Ni-Cr coating and Ni-Cr/ZrO2 gradated coating show similar and low dynamics curve near to the logarithms function. Surface observations with SEM and XRD reveal that the oxidizing surface of the C45 carbon steel substrate is mainly a loose spherical structure consisted of mainly Fe2O3 and Fe3O4. The surface structures of Ni-Cr coating and Ni-Cr/ZrO2 gradated coating after 108 hours oxidization are rather denser than that of C45 carbon steel, which can effectively improve the properties of the oxidation resistance of C45 carbon steel substrate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

691-694

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Izabel Fernanda Machado. J. Mater. Process. Technol. Vol. 172(2006), p.169.

Google Scholar

[2] G.W. Goward. Mater. Sci. Technol. Vol. 2 (1986), P. 194.

Google Scholar

[3] N. Pistofidis, G. Vourlias, D. Chaliampalias et al. J. Therm. Anal. Calorim. Vol. 84 (2006) 191.

Google Scholar

[4] Zinc Coatings. American Galvanizing Association, Englewood, CO, (2000).

Google Scholar

[5] G. Vourlias, N. Pistofidis, P. Patsalas et al. Mater. Proc. Vol. 9 (2005), p.243.

Google Scholar

[6] H. Pokhmurska, V. Dovhunyk, M. Student et al. Surf. Coat. Technol. Vol. 151-152(2002), p.490.

Google Scholar

[7] J. Tuominen, P. Vuoristo, T. Mantyla et al. J. Therm. Spray Technol. Vol. 11 (2002), p.233.

Google Scholar

[8] H. Singh, D. Puri, S. Prakash et al. Mater. Sci. Eng., A. Vol. 464 (2007), p.110.

Google Scholar

[9] D. Chaliampalias, G. Vourlias, E. Pavlidou et al. Appl. Surf. Sci. Vol. 255 (2008), p.3104.

Google Scholar

[10] D.B. Leea, Changhee Lee. Surf. Coat. Technol. Vol. 193 (2005) 239- 242.

Google Scholar

[11] H. Singh , D. Puri, S. Prakash, Rabindranath Maiti, Mater. Sci. Eng., A. Vol. 464 (2007), p.110.

Google Scholar

[12] X. Liu, Y. Xie, C. Ding. Thermal Spray 2007. p.393.

Google Scholar

[13] N. P. Padture, M. Gell, and E. H. Jordan. Science. Vol. 296 (2002), p.280.

Google Scholar

[14] S. Sharafat, A. Kobayashi, and Y. Chen. Vacuum, Vol. 65(2002), p.415.

Google Scholar

[15] Liuying Wang, Hangong Wang, Shaochun Hua and Xiaoping Cao. Plasma Science and Technology. Vol. 9(2007), p.52.

DOI: 10.1088/1009-0630/9/1/11

Google Scholar

[16] M. Kemdehoundj, J.F. Dinhut, J.L. Grosseau-Poussard, M. Jeannin. Mater. Sci. Eng., A. Vol. 435-436 (2006) p.667.

Google Scholar

[17] J. M. Guilemany, N. Cinca , S. Dosta, C.R.C. Lima. Thermal Spray 2007, p.1112.

Google Scholar

[18] Pech J, Hannoyer B. Surf. Interface Anal. Vol. 30(2000), p.585.

Google Scholar

[19] S. Matthews, B. James, M. Hyland. Corros. Sci. (2009), in press (doi: 10. 1016/j. corsci. 2009. 02. 027).

Google Scholar

[20] J.M. Guilemany, N. Cinca, S. Dosta, C.R.C. Lima. Intermetallics. Vol. 15 (2007), p.1389.

Google Scholar