Preparation of Cu2ZnSnS4 Thin Film by So-Gel Spin-Coated Deposition

Article Preview

Abstract:

In this work Cu2ZnSnS4 (CZTS) suitable for the absorption layer in solar cells was successfully prepared by sol-gel spin-coated deposition. CZTS precursors were prepared by using solutions of copper (II) chloride, zinc (II) chloride, tin (IV) chloride, and thiourea. The CZTS with texture surface structures, resulting from 3 times of stacks through the cycles of spin-coated and synthesized (at 320 °C) processes, is found to be merged well together, and the thickness of the CZTS reaches ~ 3 μm. The kesterite crystallinity of the CZTS designated from the x-ray diffraction of (112), (200), (312), and (322) planes of CZTS were obtained. The optical-energy gap of the CZTS is about 1.5 eV. The average optical-absorption coefficient of the CZTS is ~ 2.4 x 104 cm-1, and the high absorption band of the CZTS covers most of the solar irradiation spectrum. This makes the CZTS the most potential material for solar cells. The chemical composition Cu:Zn:Sn:S = 30:14:16:40 of the CZTS is obtained at a synthesized temperature of 320 °C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

835-838

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. P. Bernardini, D. Borrini, A. Caneschi, F. D. Benedetto, D. Gatteschi, S. Ristori, and M. Romanelli: Phys Chem Minerals 27 (2000), p.453.

DOI: 10.1007/s002690000086

Google Scholar

[2] F. D. Benedetto, G. P. Bernardini, D. Borrini, W. Lottermoser, G. Tippelt, and G. Amthauer: Phys Chem Minerals 31 (2005), p.683.

DOI: 10.1007/s00269-004-0430-y

Google Scholar

[3] K. Ito, and T. Nakazawa: Jpn J Appl Phys 27 (1988), p. (2094).

Google Scholar

[4] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, and T. Yokota: Sol Energy Mater & Sol Cells 49 (1997), p.407.

DOI: 10.1016/s0927-0248(97)00119-0

Google Scholar

[5] J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim: Sol Energy Mater & Sol Cells 75 (2003), p.155.

Google Scholar

[6] N. Kamoun, H. Bouzouita, and B. Rezig: Thin Solid Films 515 (2007), p.5949.

DOI: 10.1016/j.tsf.2006.12.144

Google Scholar

[7] N. Nakayama, and K. Ito: Appl Surf Sci 92 (1996), p.171.

Google Scholar

[8] H. Katagiri: Thin Solid Films 426 (2005), p.480.

Google Scholar

[9] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima: Sol Energy Mater & Sol Cells 65 (2001), p.141.

DOI: 10.1016/s0927-0248(00)00088-x

Google Scholar

[10] K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi, and H. Katagiri: Thin Solid Films 515 (2007), p.5997.

DOI: 10.1016/j.tsf.2006.12.103

Google Scholar

[11] K. Tanaka, N. Moritake, and H. Uchiki: Sol Energy Matter Sol Cells 91 (2007), p.1199.

Google Scholar