Preparation of Polymer Brushes by Surface-Initiated ARGET ATRP

Article Preview

Abstract:

This paper firstly summarized the latest research progress on the polymer brushes preparation by surface-initiated ARGET ATRP polymerization. It mainly includes the surface modifications of inorganic substrate (silicon dioxide and carbon nanotubes), and the organic substrate (cellulose and polymer microspheres). This method needs less catalyst and operates more easily, compared to the classical ATRP. Besides, it also has good polymerization controllability, and the polymer brushes have higher grafting density and molecular weight. Therefore, surface-initiated ARGET ATRP polymerization has become an effective method for modifying the surface of materials. Then, we prepared the polymer brush supported TEMPO by the surface-initiated ARGET ATRP and characterized.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 791-793)

Pages:

208-211

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Chen, R. Ferris, J. Zhang, Progress in Polymer Science, 2010, 35, pp.94-112.

Google Scholar

[2] O. Aurore, M. Franck, J. M. Raquez, Progress in Polymer Science, 2012, 37, pp.157-181.

Google Scholar

[3] B. Raphael, H. A. Klok, Langmuir, 2010, 26, pp.18219-18230.

Google Scholar

[4] F. Xu, J. Geiger, G. Baker, Langmuir, 2011, 27, pp.3106-112.

Google Scholar

[5] O. Henry, A. Mehdi, S. Kirwan, Macromol. Rapid Commun, 2011, 36, pp.1405-1410.

Google Scholar

[6] N. Estillore, J. Park, A. Rigoberto, Macromolecules, 2010, 43, pp.6588-6598.

Google Scholar

[7] F. Limpoco, R. Bailey, J. Am. Chem. Soc., 2011, 133, pp.14864-14867.

Google Scholar

[8] T. Pintauer, K. Matyjaszewski, Chemical Society Reviews, 2008, 37, pp.1087-1097.

Google Scholar

[9] Y. Kwak, A.J.D. Magenau, K. Matyjaszewski, Macromolecules, 2011, 44, pp.811-819.

Google Scholar

[10] L. Zhang, C. F. Wang, F. J. Chen, S. X. Du, G. W. Zhou, New Chemical Materials, 2012, 40(7), pp.21-24.

Google Scholar

[11] A. Haase, P. Hesse, L. Brommer, Macromol. Mater. Eng., 2013, in press.

Google Scholar

[12] B. T. CHEESMAN, D. Joshua, ACS Macro Lett., 2012, 1, p.1161−1165.

Google Scholar

[13] N. Y. Ji, H. Chen, G. X. Zong, Polym Int, 2013, in press.

Google Scholar

[14] T. J. Aitchison, G. M. Milena, M. Saunders, 2011, 49, p.4283–4291.

Google Scholar

[15] S. Hansson, E. Östmark, A. Carlmark, ACS Applied Mater & Interfa., 2009, 1, pp.2651-2659.

Google Scholar

[16] S. Hansson, V. Trouillet, T. Tischer, Biomacromolecules, 2013, in press.

Google Scholar

[17] C. H. Worthley, K. T. Constantopoulos, G. M. Milena, Journal of Membrane Science, 2011, 385-386, pp.30-39.

Google Scholar

[18] Jonsson M., D. Nystrom, O. Nordin, European Polymer Journal, 2009, 45, pp.2374-2382.

Google Scholar