Electrodeposition of Lithium in Nonaqueous Solutions and Molten Salts

Article Preview

Abstract:

In this paper, the method of electrodeposition of lithium both in nonaqueous solutions and molten salts was summarized, and the key problems existed were also carried out. More details for electrochemical deposition of lithium metal by ionic liquids including AlCl3-based, EMI-based, BF4--based, PF6--based, Tf2N--based, N(CN)2--based were discussed, and more works needed for lithium recovery by electrochemical method in the future was also pointed out.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 791-793)

Pages:

216-219

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Hoffmann and S. Conn, Patent: 3, 493, 433. (1970).

Google Scholar

[2] J. Fuller, R. A, Osteryoung and R.T. Carlin: J. Elec. Soc. Vol. 142 (1995), p.3632.

Google Scholar

[3] K. Kanamura, S. Shiraishi and Z. Takehara: J. Elec. Soc. Vol . 108-110 (1994), p. L108.

Google Scholar

[4] Y. Z. Lv, C.M. Wei, Z Chen, et al: Harbin Eng. Uni. Vol. 25 (2008), p.309.

Google Scholar

[5] Z. Chen, M.L. Zhang, W. Han, et al: J. Alloy and Com. Vol. 10 (2007), p.464.

Google Scholar

[6] B. M. Quinn, Z. Ding, R. Moulton, et al: Langmuir. Vol. 18 (2002), p.1734.

Google Scholar

[7] K. R. Seddon and J. Chem: Technol. Bio. Vol. 68 (1997), p.351.

Google Scholar

[8] D. Tian. in: The research of magnesium lithium alloy in organic electrolyte in the electrochemical behavior. edtied by Harbin Institute of Technology (2009).

Google Scholar

[9] X.W. Guo. in: The progress of electrodeposite metals from ionic liquid. edtied by Shang Hai Jiao Tong University. (2012).

Google Scholar

[10] M. Hajime and Y. Masahiro: Chem. Lett. Vol. 8 (2000), p.922.

Google Scholar

[11] B. Garcia, S. Lavallee, G. Perron, Michot, et al: Elec. Acta. Vol. 49 (2004), p.4583.

Google Scholar

[12] M. Hajime, Y. Masahiro, T. Kazumi, et al: Chem. Lett. Vol. 5 (2000), p.922.

Google Scholar

[13] S. H. Fang, L. Yang, J. X. Wang, et al: J. Power Sources. Vol. 191 (2009), p.619.

Google Scholar

[14] Y. Katayama, M. Yukumoto and T. Miura. Elelctrochem. Solid-State Lett. Vol. 5 (2003), p. A96.

Google Scholar

[15] T. Sato, T. Maruo, S. Marukane, et al: Power Sources. Vol. 138 (2004), p.253.

Google Scholar

[16] H. J. Sun, L.P. Yu, X. H. Hu, et al: Electrochem. Commun. Vol. 7 (2005), p.685.

Google Scholar

[17] J. S. Wilks and M. J. Zaworotko. J. Chem: Soc. Vol. 965 (1992), p.965.

Google Scholar

[18] J. Fuller, R.T. Carlin, H.C. De, et al: J. Chem. Phys. Vol. 118 (1994), p.273.

Google Scholar

[19] L. Deborah: J. Elec. Soc. Vol. 149 (2002), p. E185.

Google Scholar

[20] D. R. MacFarlane, S.A. Forsyth and J. Golding: Green Chem. Vol. 4 (2002), p.444.

Google Scholar

[21] T. Katsuhiko and S. Masashi: Electrochem. Solid-State Lett. Vol. 11 (2008), p. A17.

Google Scholar