Research on Dual Core Mechanism of Wireless Telemetry System

Article Preview

Abstract:

In the high-precision multi-channel wireless telemetry systems, in order to complete a variety of tasks such as the system collection and control, parameter assignment, data storage, wireless command parsing, a dual-core framework is used, in which one of the FPGA is to control c the collection board control and another is to complete the core control. This paper focuses on exploring the working mechanism of the dual-core and mutual communication mechanism which is successfully applied to the actual system.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 791-793)

Pages:

2131-2135

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Harrison, R.R. ; Fotowat, H. ; Chan, R. ; Kier, R.J. ; Olberg, R. ; Leonardo, A. ; Gabbiani, F. Wireless Neural EMG Telemetry Systems for Small Freely Moving Animals[J]. Biomedical Circuits and Systems, IEEE Transactions on, April 2011, 5(2), pp: 103-111.

DOI: 10.1109/tbcas.2011.2131140

Google Scholar

[2] Park, K. -J. ; Park, T.R. ; Schmitz, C.D. ; Sha, L. Design of robust adaptive frequency hopping for wireless medical telemetry systems[J]. Communications, IET, Jan. 2010, 4(2), pp: 178-191.

DOI: 10.1049/iet-com.2008.0693

Google Scholar

[3] RamRakhyani, A.K.; Lazzi, G. On the Design of Efficient Multi-Coil Telemetry System for Biomedical Implants[J]. Biomedical Circuits and Systems, IEEE Transactions on, Feb. 2013, 7(1), pp: 11-23.

DOI: 10.1109/tbcas.2012.2192115

Google Scholar

[4] Kyungtae Kang ; Min-Young Nam ; Jaemyoun Lee ; Juyoung Park ; Homin Yoo ; Lui Sha. Model-based design of a wireless telemetry system and QoS assessment using AADL[C]. Bioinformatics and Biomedicine Workshops (BIBMW), 2012 IEEE International Conference on, Oct. 2012, pp: 748-749.

DOI: 10.1109/bibmw.2012.6470230

Google Scholar

[5] Yuan Gao ; Shengxi Diao ; Chyuen-Wei Ang ; Yuanjin Zheng ; Xiaojun Yuan. Low power ultra-wideband wireless telemetry system for capsule endoscopy application[C]. Robotics Automation and Mechatronics (RAM), 2010 IEEE Conference on, June 2010, pp: 96-99.

DOI: 10.1109/ramech.2010.5513207

Google Scholar

[6] Fei Zhang ; Aghagolzadeh, M. ; Oweiss, K. An implantable neuroprocessor for multichannel compressive neural recording and on-the-fly spike sorting with wireless telemetry[C]. Biomedical Circuits and Systems Conference (BioCAS), 2010 IEEE, Nov. 2010, pp: 1-4.

DOI: 10.1109/biocas.2010.5709556

Google Scholar

[7] LUO Xun, WEI Li-ming, HE Bao-wei. The Development and Application of Wireless Telemetry Technology[J]. Information Technology and Informatization, 2009(2), pp: 93-94.

Google Scholar

[8] Caratelli, D. ; Massaro, A. ; Yarovoy, A. ; Cingolani, R. Accurate time-domain modelling of MEMS antennas for wireless telemetry systems[C]. Radar Conference (EuRAD), 2010 European, Sept. 2010, pp: 531-534.

Google Scholar

[9] Topsakal, E. ; Karacolak, T. ; Gaxiola-Sosa, J.E. ; Entesari, K. ; Cooper, R. ; Butler, J. ; Fisher, S. Low-power long-term implantable wireless telemetry for monitoring of physiological signals[C]. General Assembly and Scientific Symposium, 2011 XXXth URSI, Aug. 2011, pp: 1-2.

DOI: 10.1109/ursigass.2011.6051388

Google Scholar