Synchronization in Drive-Response Dynamical Networks Based on Nonlinear Control

Article Preview

Abstract:

In this paper, synchronization in drive-response dynamical networks is investigated. By using the Gerschgorins disk theorem and the stability theory, a nonlinear controller is designed to make the drive-response dynamical networks synchronized. Some sufficient conditions for achieving the synchronization of the drive-response dynamical networks are derived. The structure of the network can be random, regular, small-world, or scale-free. A numerical example is given to demonstrate the validity of the proposed method, in which the famous Lorenz system is chosen as the nodes of the network. Simulation results have verified the correctness and effectiveness of the proposed scheme. Moreover, it is worth noting that the time used for achieving synchronization of the drive-response dynamical networks sensitively depends on the coupling strength .

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 791-793)

Pages:

652-657

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world, networks. Nature 393, 409-410 (1998).

Google Scholar

[2] Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509-512 (1999).

Google Scholar

[3] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175-308 (2006).

DOI: 10.1016/j.physrep.2005.10.009

Google Scholar

[4] Strogatz, S.H.: Exploring complex networks. Nature 410, 268-276 (2001).

Google Scholar

[5] Wang, X.F.: Complex networks: topology, dynamics and synchronization. Int. J. Bifurcat. Chaos 12, 885-916 (2002).

Google Scholar

[6] Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821-824 (1990).

DOI: 10.1103/physrevlett.64.821

Google Scholar

[7] Pecora, L.M., Carroll, T.L.: Master stability function for synchronized coupled systems. Phys. Rev. Lett. 80, 2109-2112 (1998).

DOI: 10.1103/physrevlett.80.2109

Google Scholar

[8] Wang, X.F., Chen, G.: Synchronization in small-world dynamical networks. Int. J. Bifurcat. Chaos 12, 187-192 (2002).

Google Scholar

[9] Wang, X.F., Chen, G.: Synchronization in scale free dynamical networks: Robustness and fragility. IEEE Trans. Circuits Syst. I 49, 54-62 (2002).

DOI: 10.1109/81.974874

Google Scholar

[10] Li, C.G., Chen, G.: Synchronization in general complex dynamical networks with coupling delays. Physica A 343, 263-278 (2004).

DOI: 10.1016/j.physa.2004.05.058

Google Scholar

[11] Li, C., Sun, W., Kurths, J.: Synchronization between two coupled complex networks. Phys. Rev. E 76, 046204 (2007).

Google Scholar

[12] He, G., Yang, J.: Adaptive synchronization in nonlinearly coupled dynamical networks. Chaos Solitons & Fractals 38, 1254-1259 (2008).

DOI: 10.1016/j.chaos.2007.07.067

Google Scholar

[13] Hu, M., Yang, Y., Xu, Z., Zhang, R., Guo, L.: Projective synchronization in drive-response dynamical networks. Physica A 381, 457-466 (2007).

DOI: 10.1016/j.physa.2007.03.023

Google Scholar

[14] Hu, M., Yang, Y.: Projective cluster synchronization in drive-response dynamical networks. Physica A 387, 3759-3768 (2008).

DOI: 10.1016/j.physa.2008.02.066

Google Scholar

[15] Liu, Z.X., Chen, Z.Q., Yuan, Z.Z.: Pinning control of weighted general complex dynamical networks with time delay. Physica A 375, 345-354 (2007).

DOI: 10.1016/j.physa.2006.09.009

Google Scholar

[16] Xu, D., Li, Z.: Controlled projective synchronization in non-partially-linear chaotic systems. Int. J. Bifurcat. Chaos 12, 1395-1402 (2002).

DOI: 10.1142/s0218127402005170

Google Scholar

[17] Lorenz E.N.: Deterministic nonperiodic flow. J. Atmospheric. Sci. 20, 130-141 (1963).

Google Scholar