Investigation on Magnetic Properties of L10-FePt/Fe Graded Media Multilayer

Article Preview

Abstract:

To improve writing capability of high magnetic anisotropy medium - L10-FePt, graded medium multilayer is one key candidate. Therefore, investigation of magnetic material properties of graded media multilayer is essential. In this work, we focus on magnetic properties of L10-FePt/Fe graded media multilayer such as hysteresis loop, magnetic energy and magnetic domain by the micromagnetic simulation the object oriented micromagnetic framework software based on the Landau - Lifshitz - Gilbert equation. The graded media multilayer can achieve reducing the switching field, Hsw, below available writing head field with high thermal stability. The anisotropy energy in graded media is higher than single layer and bilayer media that results in unstable magnetization in preferred direction. The proposed graded (f) and (g) structures are high grading magnetocrystalline anisotropy constant, Ku, that can reduce Hsw below single layer, bilayer and available writing head field. The hysteresis loop of low grading Ku structures has different steps; however, it disappear with high grading Ku structures of graded (e) - (g) structures. They have narrow loop compared with single layer. The results from this work lead to improve magnetic trilemma issue and increase data density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-193

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Wood, Future hard disk drive systems, J. Magn. Magn. Mater. 321 (2009) 555-561.

Google Scholar

[2] A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J. U. Thiele, M. Seigler, G. Ju and E. Gage, HAMR areal density demonstration of 1+ Tpsi on spinstand, IEEE Trans. Magn. 49 (2013) 779-782.

DOI: 10.1109/tmag.2012.2219513

Google Scholar

[3] J. G. Zhu, X. Zhu and Y. Tang, Microwave assisted magnetic recording, IEEE Trans. Magn. 44 (2008) 125-131.

DOI: 10.1109/tmag.2007.911031

Google Scholar

[4] J. P. Wang, Y. Y. Zou, C. H. Hee, T. C. Chong and Y. F. Zheng, Approaches to tilted magnetic recording for extremely high areal density, IEEE Trans. Magn. 39 (2003) 1930-1935.

DOI: 10.1109/tmag.2003.813775

Google Scholar

[5] R. H. Victora and X. Shen, Exchange coupled composite media for perpendicular magnetic recording, IEEE Trans. Magn. 41 (2005) 2828-2833.

DOI: 10.1109/tmag.2005.855263

Google Scholar

[6] J. P. Wang, W. Shen and J. Bai, Exchange coupled composite media for perpendicular magnetic recording, IEEE Trans. Magn. 41 (2005) 3181-3186.

DOI: 10.1109/tmag.2005.855278

Google Scholar

[7] D. Suess, J. Lee, J. Fidler and T. Schrefl, Exchange - coupled perpendicular media, J. Magn. Magn. Mater. 321 (2009) 545-554.

DOI: 10.1016/j.jmmm.2008.06.041

Google Scholar

[8] A. Breitling and D. Goll, Hard magnetic L10-FePt thin film and nanopatterns, J. Magn. Magn. Mater. 320 (2008) 1149-1456.

DOI: 10.1016/j.jmmm.2007.12.003

Google Scholar

[9] H. Wang, H. Zhao, T. Rahman, Y. Isowaki, Y. Kamata, T. Maeda, H. Hieda, A. Kikitsu and J. P. Wang, Fabrication and characterization of FePt exchange coupled composite and graded bit patterned media, IEEE Trans. Magn. 49 (2013) 707-712.

DOI: 10.1109/tmag.2012.2230155

Google Scholar

[10] F. Wang, J. Zhang, J. Zhang, C. Wang, Z. Wang, H. Zeng, M. Zhang and X. Xu, Graded/soft/graded exchange - coupled thin films fabrication by [FePt/C]5/Fe/[c/FePt]5 multilayer deposition and post - annealing, Appl. Surf. Sci. 271 (2013) 390-393.

DOI: 10.1016/j.apsusc.2013.01.211

Google Scholar

[11] D. Hahn, M. A. Bashir, T. Schreft, A. Cazau, M. A. Gubbins and D. Suess, Graded media design foe areal density of up to 2.5 Tb/in2, IEEE Trans. Magn. 46 (2012) 1866-1868.

DOI: 10.1109/tmag.2009.2039922

Google Scholar

[12] J. Zhang, Y. Liu, F. Wang, J. Zhang, R. Zhang, Z. Wang and X. Xu, Design and micromagnetic simulation of the L10-FePt/Fe multilayer graded film, J. Appl. Phys. 111 (2012) 073910.

DOI: 10.1063/1.3702876

Google Scholar

[13] M. J. Donahue and D. G. Porter, OOMMF User's Guide, Release 1.2a3, [EB/OL]. http://math.nist.gov/oommf/, October 30, 2002.

Google Scholar

[14] R. Hu, A. K. Soh, G. P. Zheng and Y. Ni, Micromagnetic modeling studies on the effects of stress on magnetization reversal and dynamic hysteresis, J. Magn. Magn. Mater. 301 (2006) 458-468.

DOI: 10.1016/j.jmmm.2005.07.023

Google Scholar

[15] E. E. Fullerton, J. S. Jiang, M. Grimsditch, C. H. Sowers and S. D. Bader, Exchange - spring behavior in epitaxial hard/soft magnetic bilayers, Phys. Rev. B, 58 (1998) 12193-12200.

DOI: 10.1103/physrevb.58.12193

Google Scholar

[16] F. Wang, X. H. Xu, Y. Liang, J. Zhang and J. Zhang, Perpendicular L10-FePt/Fe and L10-FePt/Ru/Fe graded media obtained by post - annealing, Mater. Chem. Phys. 126 (2011) 843-846.

DOI: 10.1016/j.matchemphys.2010.12.031

Google Scholar

[17] D. Suess, J. Fidler, G. Zimanyi, T. Schreft and P. Visscher, Thermal stability of graded exchange spring media under the influence of external fields, Appl. Phys. Lett. 92 (2008) 173111.

DOI: 10.1063/1.2908052

Google Scholar