Study on Optical and Electronic Properties of Sn-Doped ZnPc

Article Preview

Abstract:

Sn doped ZnPc films were deposited on intrinsic Si and glass substrates by organic source thermal co-evaporation technique with different deposition rates. Optical properties and electronic structure were characterized by UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) respectively. The UV-Vis results showed that phase transition of ZnPc from α-phase to β-phase occurred when Sn:ZnPc deposition rate is 0.3:0.7 or higher. XPS results indicated that the outer s electron of Sn atom is transferred to the ZnPc. Broadening of the C 1s spectra is observed with the increasing of Sn deposition rate. This broadening corresponds to the change of molecular environment surrounding carbon atoms in the Sn-doped ZnPc films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

204-208

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.A. Van Slyke, C.H. Chen, C.W. Tang, Appl. Phys. Lett. 69 (1996) p.2160.

Google Scholar

[2] N.R. Armstrong, D.M. Wang, W. Alloway, D. Placencia, E. Ratcliff, M.Brumbach, Macromol. Rapid Commun. 30 (2009) p.717.

DOI: 10.1002/marc.200990018

Google Scholar

[3] Z. Bao, A.J. Lovinger, A. Dodabalapur, Appl. Phys. Lett. 69 (1996)p.3066.

Google Scholar

[4] M.-M. Ling, Z. Bao, Org. Electron. 7 (2006)p.568.

Google Scholar

[5] S.Senthilarasu, S.Velumani, R. Sathyamoorthy, A. Subbarayan, J.A. Ascencio, G.Canizal, P.J. Sebastian, J.A. Chavez, R.Perez, Appl.Phys. A 77. (2003) pp.383-389.

DOI: 10.1007/s00339-003-2184-7

Google Scholar

[6] K.Flatz, M.Grobosch, M.Knupfer, Appl.Phys. A 90, (2008)pp.243-246.

Google Scholar

[7] M.F. Craciun, S. Rogge, and A.F. Morpurgo, ,J. Am. Chem. Soc. 127, (2005) p.12210

Google Scholar

[8] M.F. Craciun, S. Rogge, M.J.L. den Boer, S. Margadonna, K. Prassides, Y. Iwasa and A.F. Morpurgo, "Electronic transport through electron-doped metal phthalocyanine materials," Adv. Mater. 18, (2006)pp.320-324.

DOI: 10.1002/adma.200501268

Google Scholar

[9] L. Gaffo, M.R. Cordeiro, A.R. Freitas, W.C. Moreira, E.M. Girotto, V. Zucolotto, "The effects of temperature on the molecular orientation of zinc phthalocyanine films," J Mater Sci. 45, (2010) pp.1366-1370.

DOI: 10.1007/s10853-009-4094-3

Google Scholar

[10] S. Senthilarasu, Y.B. Hahn, Soo-Hyoung Lee, "Nano structure formation in vacuum evaporated zinc phthalocyanine(ZnPc) thin films," J Mater Sci. 19, (2008) pp.482-486.

DOI: 10.1007/s10854-007-9368-4

Google Scholar

[11] A.B.P. Lever, Adv. Org. Chem. Radiochem. 7 (1965) p.27.

Google Scholar

[12] K.A. Nguyen, R. Pachter, J. Chem. Phys. 114 (2001) p.10757.

Google Scholar

[13] A. Rosa, G. Ricciardi, E.J. Baerends, S.J.A. van Gisbergen, J.Phys.Chem.A105(2001)p.3311.

Google Scholar

[14] D.A. Shirley, Phys. Rev. B 5, (1972)pp.4709-4714

Google Scholar

[15] Y. Niwa, H. Kobayashi, T. Tsuchiya, J. Chem. Phys. 60 (1974) 799

Google Scholar

[16] G. Dufour, C. Poncey, F. Rochet, H. Roulet, M. Sacchi, M.D. Santis, M.D. Crescenzi, Surf. Sci. 319 (1994)251.

Google Scholar

[17] H. Peisert, M. Knupfer, J. Fink, Surf. Sci. 515 (2002)p.491.

Google Scholar

[18] Z.Liu, X.Zhang, Y.Zhang,J.Jiang, Spectrochimica Acta Part A 67 (2007) pp.1232-1246.

Google Scholar

[19] M.Grobosch, C. Schmidt, R. Kraus, M. Knupfer, Organic Electronics 11(2010) pp.1438-1488.

Google Scholar

[20] H.Peisert, M.Knupfer, J.Fink,Surface Science 515 (2002) pp.491-498.

Google Scholar

[21] T.Schwieger, H.Peisert, M.S. Golden, M.Knupfer, J.Fink,Phys.Rev. B66 (2002),p.155207.

Google Scholar

[22] F.Cantao, W.Melo,L.Oliveira, A.Passos, A.Silva, Quim.Nova 3 (2010)

Google Scholar