Preparation and Electromagnetic Properties of Urchinlike Ni

Article Preview

Abstract:

Urchinlike Ni particles with different length and quantity spines were successful synthesized. The microstructures and morphologies of the resulting materials were investigated by X-ray diffraction and scanning electron microscopy. The amount of N2H4H2O plays an important role in the morphology of urchin. The electromagnetic parameters of these urchinlike Ni were measured with vector network analyzer at 2-18 GHz frequency. The results indicate that the microwave absorbing properties are improved by the urchin structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

218-221

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Zhang, C. Zhang, Z. Chen, Microwave Absorbing Properties of Radar Absorbing Structure Composites Filling with Carbon Nanotubes, Adv. Mater. Res. 328-330 (2011) 1109-1112.

DOI: 10.4028/www.scientific.net/amr.328-330.1109

Google Scholar

[2] X. Gu, W. Zhu, C. Jia, et al. Synthesis and microwave absorbing properties of highly ordered mesoporous crystalline NiFe2O4, Chem. Comm. 47 (2011) 5337-5339.

DOI: 10.1039/c0cc05800a

Google Scholar

[3] Z.B. Li, Y.D. Deng, B. Shen, et al. Synthesis, characterization and microwave properties of Ni–Co–P hollow spheres, J. Alloys Compd. 491 (2010) 406-410.

DOI: 10.1016/j.jallcom.2009.10.198

Google Scholar

[4] J. Bu, P. Wang, L. Ai, X. Sang, Y. Li, Absorbing Properties of Composite Material Plates of Multi-Layer Absorbing Structure, Adv. Mater. Res. 287-290 (2011) 9-14.

DOI: 10.4028/www.scientific.net/amr.287-290.9

Google Scholar

[5] R.F. Zhuo, H.T. Feng, Q. Liang, et al. Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs, J. Phys. D: Appl. Phys. 41 (2008) 185405.

DOI: 10.1088/0022-3727/41/18/185405

Google Scholar

[6] M.S. Cao, X.L. Shi, Fang X Y, et al. Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites, Appl. Phys. Lett. 91 (2007) 203110.

DOI: 10.1063/1.2803764

Google Scholar

[7] Y.Z. Fan, H.B. Yang, M.H. Li, et al. Evaluation of the microwave absorption property of flake graphite, Mater. Chem. Phys. 115 (2009) 696-698.

DOI: 10.1016/j.matchemphys.2009.02.010

Google Scholar

[8] M.X. Yu, X.C. Li, R.Z. Gong, et al. Magnetic properties of carbonyl iron fibers and their microwave absorbing characterization as the filer in polymer foams, J. Alloys Compd. 456(2008) 452-455.

DOI: 10.1016/j.jallcom.2007.02.106

Google Scholar

[9] G.B. Sun, X.Q. Zhang, M.H. Cao, et al. Facile Synthesis, Characterization, and Microwave Absorbability of CoO Nanobelts and Submicrometer Spheres, J. Phys. Chem. C. 2009, 113: 6948-6954.

DOI: 10.1021/jp8092447

Google Scholar

[10] R.F. Zhuo, H.T. Feng, J.T. Chen, et al. Multistep Synthesis, Growth Mechanism, Optical, and Microwave Absorption Properties of ZnO Dendritic Nanostructures, J. Phys. Chem. C. 112 (2008) 11767-11775.

DOI: 10.1021/jp804090q

Google Scholar

[11] G.X. Tong, W.H. Wu, J.G. Guan, et al. Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: Microwave electromagnetic and absorbing properties, J. Alloys Compd. 509 (2011) 4320-4326.

DOI: 10.1016/j.jallcom.2011.01.058

Google Scholar

[12] L. Qiao, X. Han, B. Gao, et al. Microwave absorption properties of the hierarchically branched Ni nanowire composites, J. Appl. Phys. 105 (2009) 53911.

Google Scholar

[13] M. Zhou, X. Zhang, J.M. Wei, et al. Morphology-Controlled Synthesis and Novel Microwave Absorption Properties of Hollow Urchinlike α-MnO2 Nanostructures, J. Phys. Chem. C. 115 (2011) 1398-1402.

DOI: 10.1021/jp106652x

Google Scholar

[14] M.Z. Wu, Y.D. Zhang, S. Hui, et al. Microwave magnetic properties of Co50/(SiO2)50 nanopaticles, Appl. Phys. Lett. 80 (2002) 4404-4406.

DOI: 10.1063/1.1484248

Google Scholar