Effect of Equal Channel Angular Pressing and Annealing on Corrosion Resistance of Al-Cu Alloy

Article Preview

Abstract:

Al-3.9wt.%Cu alloy was subjected to equal channel angular pressing (ECAP) and subsequent low temperature annealing treatment, and the corrosion resistance of the samples was investigated by potentiodynamic polarization measurements in 3.5% NaCl solution. The results show that the corrosion rate of the ultrafine-grained alloy increases, in comparison with the coarse-grained alloy. Meanwhile, it is noted that the corrosion resistance of the alloy subjected to ECAP can be improved by relief annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

226-229

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. M. Segal: Mater. Sci. Eng. A Vol. 271 (1999), p.322.

Google Scholar

[2] Y. Iwahashi, J.T. Wang, and Z. Horita: Scripta Mater. Vol. 35 (1996), p.143.

Google Scholar

[3] M.K. Chung, Y.S. Choi, J.G. Kim, Y.M. Kim, and J.C. Lee: Mater. Sci. Eng. A Vol. 366 (2004), p.282.

Google Scholar

[4] I.J. Son, H. Nakano, S. Oue, S. Kobayashi, H. Fukushima, and Z. Horita: Mater. Trans. Vol. 49 (2008), p.2648.

Google Scholar

[5] K.D. Ralston, D. Fabijanic, and N. Birbilis: Electrochim. Acta. Vol. 56 (2011), p.1729.

Google Scholar

[6] D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, and D.H. Yang: Trans. Nonferrous Met. Soc. China Vol. 19 (2009), p.1065.

Google Scholar

[7] Ł. Dolega, B. Adamczyk-Cies´lak, J. Mizera, and K.J. Kurzydłowski: J. Mater. Sci. Vol. 47 (2012), p.3026.

Google Scholar

[8] E.M. Sherif, E.A. El-Danaf, M.S. Soliman, and A.A. Almajid: Int. J. Electrochem. Sci. Vol. 7 (2012), p.2846.

Google Scholar

[9] C. op'tHoog, N. Birbilis, and Y. Estrin: Adv. Eng. Mater. Vol. 10 (2008), p.579.

Google Scholar

[10] D. Orlov, K.D. Ralston, N. Birbilis, and Y. Estrin: Acta Mater. Vol. 59 (2011), p.6176.

Google Scholar

[11] J.H. Jiang and A.B. Ma: J. Rare Earths Vol. 27 (2009), p.848.

Google Scholar

[12] T. Yamasaki, H. Miyamoto, T. Mimaki, A. Vinogradov, and S. Hashimoto: Mater. Sci. Eng. A Vol. 318 (2001), p.122.

Google Scholar

[13] Z. J. Zheng, Y. Gao, Y. Gui, and M. Zhu: Corros. Sci. Vol. 54 (2012), p.60.

Google Scholar

[14] A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, and Y.T. Zhu: Scripta Mater. Vol. 51 (2004), p.225.

Google Scholar

[15] J.G. Brunner, J. May, H.W. HÖppel, M. Göken, and S. Virtanen: Electrochim. Acta. Vol. 55 (2010), p. (1966).

Google Scholar

[16] J.G. Brunner, N. Birbilis, K.D. Ralston, and S. Virtanen: Corros. Sci. Vol. 57 (2012), p.209.

Google Scholar

[17] D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, D.H. Yang, and J.F. Fan: Corros, Sci. Vol. 52 (2010), p.481.

Google Scholar

[18] D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, D.H. Yang, and J.F. Fan: Corros. Sci. Vol. 53 (2011), p.362.

Google Scholar

[19] G. Ben Hamua, D. Eliezer, and L. Wagner: J. Alloys Comp. Vol. 468 (2009), p.222.

Google Scholar

[20] M. Hoseini, A. Shahryari, S. Omanovic, and J.A. Szpunar: Corros. Sci. Vol. 51 (2009), p.3064.

Google Scholar

[21] R.J. Hellmig, M. Janecek, B. Hadzima, O.V. Gendelman, M. Shapiro, X. Molodova, A. Springer, and Y. Estrin: Mater. Trans. Vol. 49 (2008), p.31.

DOI: 10.2320/matertrans.me200717

Google Scholar

[22] K.D. Ralston and N. Birbilis: Corrosion Vol. 66 (2010), 0750051.

Google Scholar

[23] Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Longdon: Acta Mater. Vol. 46 (1998), p.3317.

Google Scholar

[24] D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, and L.Y. Zhang: Prog. Natur. Sci: Mater. Inter. Vol. 21 (2011), p.307.

Google Scholar