High Temperature Phase Transformation in a Cold-Rolled Fe-Mn-Si Alloy

Article Preview

Abstract:

The internal friction of a cold-rolled Fe-Mn-Si alloy has been investigated using a multifunctional internal friction apparatus though forced vibration method from room temperature to 950 °C. It has been shown that an internal friction peak is found on the IF-T curves during first heating at around 640 °C for the cold-rolled Fe-Mn-Si alloy. The internal friction peak is confirmed to be crystallizing peak of amorphous. The amorphous is resulted from the cold-rolling of the Fe-Mn-Si alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-246

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. G. Gavriljuk, P. G. yakovenko, K. Ullakko: Scripta Materialia Vol. 38 (1998) 931-935.

DOI: 10.1016/s1359-6462(97)00557-5

Google Scholar

[2] J. H. Jun, C. S. Choi: Mater. Sci. Eng. A Vol. 252 (1998) 133-138.

Google Scholar

[3] K. K. Jee, W. Y. Jang, S. H. Baik, M. C. Shin and C. S. Choi: Scripta Materialia Vol. 37 (1997) 943-948.

DOI: 10.1016/s1359-6462(97)00198-x

Google Scholar

[4] K. K. Jee, W. Y. Jang, S. H. Baik, M. C. Shin: Mater. Sci. Eng. A Vol. 273-275 (1999) 538-542.

Google Scholar

[5] S. H. Baik, Nuclear Engineering and design Vol. 198 (2000) 241-252.

Google Scholar

[6] V. V. Bliznuk, N. I. Glavatska, O. Söderberg and V. K. Lindroos: Mater. Sci. Eng. A Vol. 338 (2002) 213.

Google Scholar

[7] Y. S. Zhang, X. Lu, X. Tian, Z. X. Qin: Mater. Sci. Eng. A Vol. 334 (2002) 19-27.

Google Scholar

[8] A. Baruj, A. Fernández Guillermet, M. Sade: Mater. Sci. Eng. A. 273-275 (1999) 507-511.

Google Scholar

[9] C. M. Li, F. Sommer, E. J. Mittemeijer: Mater. Sci. Eng. A Vol. 325 (2002) 307-319.

Google Scholar

[10] M.J. Roberts: Metall. Trans. Vol. 1 (1970) 3287-3294.

Google Scholar

[11] A. R. Troiano, F. T. MeGuire: Tans. Am. Soc. Met Vol. 31 (1943) 340-359.

Google Scholar

[12] M. Hillert, T. Wada, H. Wada: J. Iron Steel Inst. 205 (1967) 539-546.

Google Scholar

[13] G. Kirchner, T. Nishizawa, B. Uhrenius: Metall. Trans. Vol. 4 (1973) 167.

Google Scholar

[14] T. Y. Hsu, Z. Y. Xu: Mater. Sci. Eng. A Vol. 273-275 (1999) 494-497.

Google Scholar

[15] H. Li, D. Dunne, N. Kennon: Mater. Sci. Eng. A Vol. 273-275 (1999) 517-523.

Google Scholar

[16] G. J. Arruda, V. T. L. Buono, M. S. Andrade: Mater. Sci. Eng. A Vol. 273-275 (1999) 528-532.

Google Scholar

[17] A. T. W. Kempen, F. Sommer, E. J. Mittemeijer: Acta Mater. Vol. 50 (2002) 3545-3555.

Google Scholar

[18] Z. C. Zhou: Mater. Sci. Eng. A Vol. 442 (2006) 82-85.

Google Scholar

[19] Z. C. Zhou,Y. J. Yan and M. Zhong: phys. Stat. sol. (a) Vol. 205 (2008) 2875-2879.

Google Scholar

[20] Z. C. Zhou, S. Y. Gu, C. E. Wen: J. Alloys Compd. Vol. 509 (2011) 1644-1647.

Google Scholar

[21] Z. C. Zhou, J. Y. Xiong, S. Y. Gu, D. K. Yang, Y. J. Yan, J. Du: J. Alloys Compd. Vol. 509 (2011) 7356-7360.

Google Scholar

[22] Z. C. Zhou, F. S. Han: phys. Stat. sol. (a) Vol. 199 (2003) 202-206.

Google Scholar

[23] K. Sugimoto, K. Mizutani, S. Shiode: J. Mater. Sci. Vol. 1 (1973) 103-108.

Google Scholar

[24] J. F. Delorme, P.F. Gobin: Metaux, Corr. Ind. Vol. 573 (1973) 185-192.

Google Scholar

[25] A. R. Troiano, F. T. McGuire: Trans. ASM Vol. 31 (1943) 340-359.

Google Scholar

[26] R. Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Prog Mater. Sci. Vol. 45 (2000) 103-189.

Google Scholar

[27] C. C. Koch, D. G. Morris, K. Lu, A. Inoue: MRS Bull. Vol. 24 (1999) 54-58.

Google Scholar

[28] R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe: J. Mater. Res. Vol. 17 (2002) 5-8.

Google Scholar

[29] Y. Hiki, T. Yagi, T. Aida, S. Takeuchi: Mater. Sci. Eng. A Vol. 370 (2004) 302-306.

Google Scholar