Preparation of Self-Assembled Au Nanoparticles Arrays for Silicon Solar Cell Applications

Article Preview

Abstract:

Au nanoparticles arrays for silicon solar cells were fabricated by self-assembly method to accommodate manufacturing process of traditional silicon solar cells. Surface morphologies of 10-30 nm thick films after annealing treatment at 600 °C and 700 °C were analyzed. It indicated that morphological features of Au nanoparticles arrays such as particle shapes, size distribution vary with thicknesses of Au films, annealing temperatures and surface morphologies of substrates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-262

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nie R and Emory R, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275: 1102-1106 (1997).

DOI: 10.1126/science.275.5303.1102

Google Scholar

[2] Moskovits M, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57: 783-826 (1985).

DOI: 10.1103/revmodphys.57.783

Google Scholar

[3] Atwater HA and Polman A, Plasmonics for improved photovoltaic devices. Nature materials 9: 205-213 (2010).

DOI: 10.1038/nmat2629

Google Scholar

[4] Kim SS, Na SI, Jo J, Kim DY and Nah YC, Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. 93: 073307-073309 (2008).

DOI: 10.1063/1.2967471

Google Scholar

[5] Morfa AJ, Rowlen KL, Reilly TH, Romero MJ, and Lagemaat J, Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 92: 013504-013506 (2008).

DOI: 10.1063/1.2823578

Google Scholar

[6] Lindquist NC, Luhman WA, Oh SH, and Holmes R, Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl. Phys. Lett. 93: 123308-12310 (2008).

DOI: 10.1063/1.2988287

Google Scholar

[7] Hagglund C, Zach M and Kasemo B, Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl. Phys. Lett. 92: 013113-013115 (2008).

DOI: 10.1063/1.2830817

Google Scholar

[8] Ferry VE, Verschuuren MA, Li HBT, Schropp REI, Atwater HA, and Polman A, Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors. Appl. Phys. Lett. 95: 183503-183505 (2009).

DOI: 10.1063/1.3256187

Google Scholar

[9] Stuart HR, Hall DG, Absorption enhancement in silicon on insulator waveguides using metal island films. Appl. Phys. Lett, 69: 2327-2329 (1996).

DOI: 10.1063/1.117513

Google Scholar

[10] Stuart HR, Hall DG, Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 73: 3815-3817 (1998).

DOI: 10.1063/1.122903

Google Scholar

[11] SCHAADT D M, FENG B, and YU E T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles[J]. Appl Phys Lett, 2005, 86(6): 063106.

DOI: 10.1063/1.1855423

Google Scholar

[12] DERKACS D, CHEN W V, MATHEU P M, et al. Nanoparticle-induced light scattering for improved performance of quantum-well solar cells[J]. Appl Phys Lett, 2008, 93(9): 091107.

DOI: 10.1063/1.2973988

Google Scholar

[13] Derkacs D, Lim SH, Matheu P, Mar W and Yu ET, Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 89: 093103-093105 (2006).

DOI: 10.1063/1.2336629

Google Scholar

[14] Derkacs D, Chen WV, Matheu PM, Lim SH, Yu PKL, and Yu ET, Nanoparticle-induced light scattering for improve performance of quantum-well solar cells. Appl. Phys. Lett. 93, 091107-091109 (2008).

DOI: 10.1063/1.2973988

Google Scholar

[15] Nakayama K, Tanabe K, and Atwater HA, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 93, 121904-121906 (2008).

DOI: 10.1063/1.2988288

Google Scholar

[16] Yang J, You JB, Chen CC, Hsu WC, Tan HR, Zhang XW, Hong Z, and Yang Y, Plasmonic polymer tandem solar cell. Acs nano, 5: 6210-6217 (2011).

DOI: 10.1021/nn202144b

Google Scholar

[17] Jana NR, Gearheart L and Murphy CJ, Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. J. Phys. Chem. B 105: 4065-4067 (2001).

DOI: 10.1021/jp0107964

Google Scholar

[18] Walker CH, John JVS, and Neilson PW, Synthesis and Size Control of Gold Nanoparticles Stabilized by Poly(methylphenylphosphazene). J. Am. Chem. Soc. 123: 3846-3847 (2001).

DOI: 10.1021/ja005812+

Google Scholar

[19] Chen CD, Yeh YT, Wang CRC, The fabrication and photo-induced melting of networked gold nanostructures and twisted gold nanorods. Journal of Physics and Chemistry of Solids 62: 1587-1597 (2001).

DOI: 10.1016/s0022-3697(01)00098-1

Google Scholar

[20] Bosbach J, Martin D, Stietz F, Wenzel T, and Trager F, Laser-based method for fabricating monodisperse metallic nanoparticles. Appl. Phys. Lett. 74: 2605-2607 (1999).

DOI: 10.1063/1.123911

Google Scholar

[21] Chang SS, Shih CW, Chen CD, Lai WC, and Wang CRC, The Shape Transition of Gold Nanorods. Langmuir 15: 701-709 (1999).

DOI: 10.1021/la980929l

Google Scholar

[22] Felidj N, Aubard J, and Levi G, Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys. Rev. B 65: 075419-075417 (2002).

DOI: 10.1103/physrevb.65.075419

Google Scholar

[23] Malinsky MD, Kelly KL, Schatz GC, and Duyne RPV, Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles. J. Phys. Chem. B 105: 2343-2350 (2001).

DOI: 10.1021/jp002906x

Google Scholar

[24] Chunyan Duan, Xiaoxia Zhao, Changji Hu, Dongliang Lu and Hui Shen, Preparation of Ag nanoparticles arrays for silicon solar cells, Advance Material Research, (2011).

Google Scholar